

化肥行业低碳发展系列研究报告

中国化肥减量增效十年之路

关于落基山研究所(RMI)

落基山研究所 (Rocky Mountain Institute, RMI) 成立于1982年,是一家立足市场、独立运作的专业智库,致力于通过经济可行的市场化解决方案推动全球能源转型,构建繁荣、韧性、清洁的低碳未来。落基山研究所与企业、政策制定者、科研机构、创业者及跨领域伙伴广泛协作,推动战略性投资,以扩大清洁能源解决方案的规模化部署、减少能源浪费、并提升可负担清洁能源的可及性,在保障能源安全和经济效益的同时,携手共创可持续的美好愿景。目前,落基山研究所的研究和实践已覆盖全球50余个国家和地区。

作者与鸣谢

作者

郝一涵、李君、李婷、谢璨阳

作者按姓名拼音顺序排列。 除非另有说明,所有作者均来自落基山研究所。

其他作者

吴海铭

联系方式

李君, jun.li@rmi.org

引用建议

落基山研究所,中国化肥减量增效十年之路,2025,https://rmi.org.cn/insights/fertilizer-reduction-report/

RMI 重视合作,旨在通过分享知识和见解来加速能源转型。因此,我们允许感兴趣的各方通过知识共享 CC BY-SA 4.0 许可参考、分享和引用我们的工作。https://creativecommons.org/licenses/by-sa/4.0/

除特别注明,本报告中所有图片均来自iStock。

鸣谢

本报告特别鸣谢以下专家对报告撰写提供的洞见与建议(姓名按姓氏首字母顺序排列):

马涛涛 中化化肥特种肥料事业部副总经理 **苏建英** 中国氮肥工业协会产业发展部主任 **万亚男** 中国农业大学资源与环境学院副教授

本报告作者感谢CRU大宗商品研究所、肥料技术推广相关机构的专家在本报告撰写过程中给予的宝贵指导与建议。 本报告所述内容不代表以上专家及其所在机构观点。

前言

化肥是工业革命的产物,是当今农业生产过程中重要的化学投入品,已经成为现代农业的标志物。化肥的出现, 打破了传统农业依赖于地力自然恢复的瓶颈,让人类能够高效地为作物生长补充必要的营养元素,成为保障粮食 安全的重要手段。然而,由化肥的不合理施用而产生的一系列环境影响,如水体富营养化、土壤退化、非二氧化 碳温室气体排放等,给农业可持续发展带来挑战。

当前,全球农业生产仍面临增产压力。人口持续快速增长凸显全球特别是南方国家确保粮食安全的重大挑战。2024年,全球人口已突破81亿,据联合国预测,到2050年世界人口将突破96亿,其中中等收入和低收入国家人口占比预计将上升至87%1。尽管过去数十年全球农产品产量实现跨越式提升,2023年全球仍有9%的人口处于饥饿状态,其中大部分集中在亚洲、非洲等南方国家集中的区域2。

面对资源环境硬约束和粮食需求的刚性增长,实现化肥的科学施用和效率提升,是同时应对粮食增产和减缓化肥带来环境问题的国际共识,而中国的化肥行业转型极具代表性。作为世界人口和化肥生产消费大国,中国农业面临着粮食增产和环境保护的双重压力,其中"高投入—高产出—高污染"的化肥过量施用问题在小农生产中尤为突出。中国的化肥转型不仅关乎本国粮食安全和农业现代化,对全球农业可持续转型也具有重要意义。

中国化肥的产量和用量均于 2015 年达到峰值,当年启动的"化肥使用量零增长行动"成为中国探索化肥减量增效路径的里程碑事件。回望过去十年,中国通过顶层设计辅以央地协同,结合科技创新与市场机制,多措并举,逐步走出了一条在保障粮食安全的前提下有效降低化肥使用强度、提升化肥利用效率的农业系统性转型之路。从成效来看,全国农用化肥施用量连续九年下降,从 2015 年的 6023 万吨下降至 2024 年的 4988 万吨,降幅达17.2%;全国三大粮食作物(水稻、小麦、玉米)的化肥利用率从 2015 年的 35% 连年攀升至 2024 年的 42.6%。化肥施用方式更加科学、精准,一批新技术、新产品、新机具得以落地应用,养分结构更加合理,有机肥资源得到进一步利用。与此同时,粮食及重要农产品供给能力持续提升,从 2015 年起我国粮食总产量达到并连续九年保持 1.3 万亿斤及以上,2024 年全年粮食产量首次突破 1.4 万亿斤,粮食安全得到进一步保障。据 RMI 估算,截至 2024 年,化肥使用量零增长和减量化行动累计避免了约 1.26 亿吨化肥施用量。

从国际视角看,化肥行业的转型不仅涉及工业、农业生产技术进步,更是平衡粮食安全、环境保护和农民收益的综合治理实践。在国内,化肥行业的转型并非"孤案",而是嵌入于中国推动供给侧结构性改革、实施制造强国战略、追求经济高质量发展的时代进程中,同时也反映了随着居民购买力提升,对农产品和食品质量提出更高要求的消费升级趋势。在此背景下,诸多行业都经历了深刻转型,而化肥行业正是其中一个颇具代表性的缩影。

与此同时,随着中国"碳达峰、碳中和"目标的落实,全经济领域迈入绿色低碳发展新阶段,各个行业转型之路也需要不断探索新思路、新办法。从温室气体排放的角度来看,氮肥是化肥行业温室气体排放的主要来源,是降碳减排的重点领域。氮肥生产的能耗与碳排放强度较高,氮肥不合理的田间施用则涉及氧化亚氮等非二氧化碳温室气体的大量排放。我国"双碳"工作"1+N"政策体系已为中国化肥行业转型明确了方向。2022年5月,农业农村部、国家发展改革委下发《农业农村减排固碳实施方案》,其中对于化肥的施用环节提出重点任务,即"提高氮肥利用效率,降低氧化亚氮排放"。2022年7月,工业和信息化部、国家发改委、生态环境部印发《工业领域碳达峰实施方案》,鼓励可再生能源制氢,优化煤化工与合成氨原料结构,降低工业领域碳排放。未来,如何实现化肥行业从生产、运输再到施用环节的全生命周期绿色低碳转型,并且平衡好粮食安全、环境污染治理等多重目标,将成为全球农业和化工行业可持续发展的系统性课题。

本报告是 RMI "化肥行业低碳发展系列研究报告"的首份研究成果,旨在系统回顾和梳理全球化肥行业的发展历程和现状,并对中国十年来实施化肥减量增效的政策、行动和成效进行总结。在此基础上,本报告聚焦全球应对气候变化和能源转型背景,对未来化肥行业进一步转型发展的机遇与挑战做出总体展望。我们也将在后续的研究中就化肥行业的低碳转型之路继续提出不同侧重的具体思路与建议。转型与改革仍在继续,新时代为其注入了新的内涵。过去十年只是一个开端,"温故而知新",总结经验旨在更好地前行,为中国农业与工业下一步的转型夯实基础。同时,"他山之石,可以攻玉"。本报告也希望帮助国际社会理解中国农业绿色发展的路径和逻辑,为其他发展中国家提供借鉴,共同促进全球农食系统向更可持续、更公平、更具韧性的方向迈进。

目录

执行	执行摘要7			
-,	从粮食安全到减量增效: 化肥行业新命题	13		
	1.1 化肥行业的基础地位与发展现状	13		
	1.2 化肥对人口增长和粮食安全的贡献			
	1.3 化肥的不合理施用带来的挑战	17		
=,	化肥减量增效的国际视角	18		
		4.0		
	2.1 发达国家与发展中国家化肥施用特征的差异			
	2.2 发达国家化肥减量增效的实践			
	2.3 发展中国家化肥施用的差异化管理措施			
三、	我国化肥减量增效的经验与成效	22		
	3.1 我国化肥减量增效的现实驱动	22		
	3.2 政策、市场、技术协同成为推动化肥减量增效的重要抓手			
	3.3 化肥减量增效取得显著成效			
m	未来化肥行业转型的机遇和挑战			
四、	木米化肥仃业转空的机迪和挑战	31		
	4.1 化肥行业绿色低碳转型发展机遇广阔	31		
	4.2 化肥行业转型发展仍需克服一系列挑战	34		
结语	<u> </u>	35		
参考	美文献	36		

执行摘要

化肥是当今农业生产过程中重要的化学投入品,对粮食安全和人口增长做出不可替代 的贡献。

化肥的出现,打破了传统农业依赖于地力自然恢复的瓶颈,让人类能够高效地为作物生长补充必要的营养元素。化肥施用为保障全球粮食安全做出了不可替代的贡献。学界普遍认为化肥施用对作物单产的平均贡献率达到 40% 以上 3.4。据相关研究估算,2015 年全球的 73.8 亿人口中,35.4 亿(约 48%)是由氮肥施用增加的食物产量所供养 5.6。

然而,化肥的生产和不合理施用产生一系列环境影响,给农业与化工行业可持续发展 带来挑战。

在生产端,化肥中的氮肥属于典型的能源密集型和排放密集型产品。氮肥的生产高度依赖煤炭和天然气化石能源投入,使得氮肥成为工业领域单位排放最密集的产品之一,碳排放强度超过粗钢和水泥 ⁷。

在施用端,化肥的不合理施用导致水体富营养化、土壤退化与污染、温室气体排放等环境影响。过量施肥既会导致氮磷元素大量流失至地表水和地下水,造成水环境污染,也会导致土壤板结、土壤酸化、次生盐渍化等问题。此外,氮肥田间施用后会通过反硝化等过程产生大量氧化亚氮(N_2O)排放,使得农用地成为目前全球重要的 N_2O 排放源之一,占人为 N_2O 排放的 1/3 以上 8。

如何实现化肥行业从生产到施用的全生命周期绿色低碳转型,并且平衡好粮食安全、环境污染治理等多重目标,将成为全球农业和化工行业可持续发展的系统性课题。

面对资源环境硬约束和粮食需求的刚性增长,实现化肥的科学施用和效率提升已成为 国际共识。从全球来看,发达国家和发展中国家 [†] 在化肥施用和管理上的显著差异源于 其不同的农业发展阶段、国情与政策目标。

历史数据表明,发展中国家在施肥总量和单位面积施肥量上持续增长并已超过发达国家,而发达国家在达到用量峰值后已进入减量提质阶段。

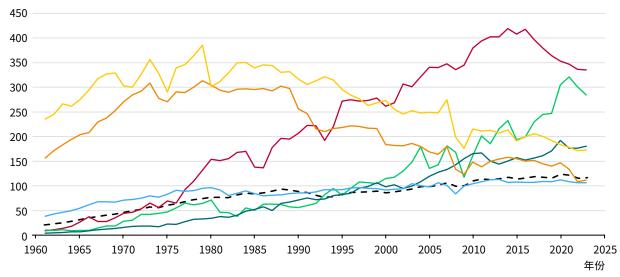
欧美及日本等发达国家与地区较早地开展了化肥减量工作,目标集中于环境保护、农产品质量和农业可持续发展。 欧盟通过《硝酸盐指令》《农场到餐桌战略》等政策控制化肥使用;美国推广养分管理计划与最佳实践补贴;日本则在发展"环境保全型"农业的理念指引下支持环保型农户,实现减肥增效。

发展中国家也采取了符合国情的化肥管理措施。中国、印度及部分中东欧国家已将化肥减量作为重点,通过构建政策体系、推广精准农业技术来应对过量施肥问题。同时,通过扩大产能、降低成本以保障化肥供应和使用,仍是许多发展中国家的政策重心,尤其是在非洲等地。

i 本研究中的国家分类参考了联合国经济与社会事务部(世界经济形势与展望2025)服告。"发展中国家"指联合国报告中的"发展中经济体"(Statistical Annex Table C)和"转型经济体"(Statistical Annex Table B),"发达国家"指联合国报告中的"发达经济体"(Statistical Annex Table A)。

中国作为世界人口和化肥生产消费大国,其农业面临着粮食增产和环境保护的双重压力,其中"高投入—高产出—高污染"的化肥过量施用问题在小农生产中尤为突出。中国的化肥转型不仅关乎本国粮食安全和农业现代化,对全球农业可持续转型也具有重要意义。

从上世纪 70 年代中期到 2015 年前,即"十二五"末期,我国的化肥行业经历了长达 40 年的高速发展期,从依赖进口到实现自给自足、出口国际市场。我国也已成为全球最大的氮肥和磷肥生产国,产量分别占全球的 26% 和 30%; 氮磷钾养分施用量均居全球第一。


我国化肥减量增效是由节本增效、绿色发展、农产品质量提升、行业转型等多方面现实需求共同驱动的。

- 节本增效是推动化肥减量的基本动因。长期以来我国单位耕地的化肥投入量远高于国际平均水平(图表 ES1)。
- 为了有效减缓农业面源污染与土壤退化等环境问题,必须推动化肥减量,加速农业绿色发展。2010年我国种植业总氮和总磷排放分别占全国排放总量的比例高达 34% 和 26%¹⁰。
- 市场对高质量农产品需求不断提升是推进化肥减量、实现农业价值链升级的重要外部动力。绿色有机农业也成为农业与食品消费领域的新兴增长点。
- 供需失衡也是加速化肥行业供给侧结构性改革与减量化行动的关键动因。"十二五"期间,氮肥产能增速远高于消费增速,叠加能源价格大幅上涨、企业生产成本剧增,基础肥料市场逐渐沦为"红海"。

图表 ES1 全球及主要国家单位耕地化肥投入量对比

--- 全球平均 — 中国 — 巴西 — 印度 — 日本 — 西欧 — 美国

单位耕地化肥投入量(kg/ha)

来源:联合国粮农组织、RMI分析

注:根据联合国粮农组织数据库,"西欧"包含奥地利、比利时、法国、德国、卢森堡、荷兰和瑞士七个国家。

自 2015 年启动"化肥使用量零增长行动"以来,中国逐步走出了一条在保障粮食安全的前提下有效降低化肥使用强度、提升化肥利用效率的农业系统性转型之路。

2015年,中国启动的"化肥使用量零增长行动"成为探索化肥减量增效路径的里程碑事件,此后化肥用量从增长正式进入下降阶段。回望过去十年,我国逐步构建起以政策引导为核心、市场调控为抓手、技术支撑为基础的综合治理体系,在生产和施用两端发力,全面推动化肥减量增效(图表 ES2):

一是政策引导设立约束性目标。在 2015 年中央 1 号文件对"加强农业生态治理"作出专门部署后,原农业部(现农业农村部)与工业和信息化部分别从施用和生产两端明确提出面向 2020 年的发展目标和重点行动,包括"力争到 2020 年,主要农作物化肥使用量实现零增长""化解过剩产能、调整产品结构"等。

二是充分发挥市场机制对化肥的生产和流通的调控作用。国家取消了对化肥生产环节原材料和能源价格以及流通环节税费的优惠政策,对化肥价格形成机制进行市场化改革;进一步构建和完善涵盖化肥产、供、储、销、施等各环节的市场调控政策体系,包括进出口调控、化肥储备、农业补贴改革等。

三是在施用端多措并举实现化肥减量增效。我国明确了化肥减量的四条技术路径:精准施肥、调整化肥使用结构、改进施肥方式和有机肥替代化肥,通过技术推广、试点示范、农业社会化服务等途径促进先进技术落地,并在中央和地方的协同下因地制宜推进化肥减量工作。

图表ES2 中国化肥减量增效工作的综合体系

	生产流通环节 化肥行业		施用环节 农业行业		
	工业和信息化部 《关于推进化肥行业转型发展的指导意见》		农业农村部(原农业部) 《到2020年化肥使用量零增长行动方案》 《到2025年化肥减量化行动方案》		
· 转型	化解过剩产能	调整产品结构	推进精准施肥	调整肥料结构	
路径	技术装备升级	农化服务拓展	改进施肥方式	化肥多元替代	
	技术改造与转	支术改造与转型升级专项 农业技术推广与教育培训		-与教育培训	
I I I I I I I I I I I I I I I I I I I	试点示范建设				
措施	农业社会化服务体系建设				
	有机肥产业培育				
	化肥价格形成机制市场化改革 进出口调控 化肥储备制度		农资补贴 粮食最低收购价政策		
	环境准入与执法监管		央地协同与分区施策		

来源: RMI 分析

十年来,我国化肥减量工作取得显著成效。

全国化肥施用量连续九年保持下降,从2015年的6023万吨下降至2024年的4988万吨,下降17.2%。三大粮食作物(水稻、小麦、玉米)的化肥利用率从2015年的35%攀升至2024年的42.6%。根据RMI分析,通过化肥零增长和后续的减量化行动,与反事实情景相比,我国2015—2024年总计避免了约1.26亿吨的化肥施用量(图表ES3)。

图表 ES3 中国化肥零增长与减量化行动的成效

化肥施用折纯量(万吨)

来源: 国家统计局、RMI 分析

农产品产量增长与化肥用量增长实现基本解耦。化肥减量化背景下,粮食等重要农产品供给能力持续提升,粮食安全得到保障。从 2015 年到 2024 年,粮食、油料、蔬菜和水果四类农产品的产量分别增长了 7%、17%、30%和 38%¹¹。

化肥减量增效有力推动了我国农业高效绿色发展。肥料养分利用更加高效,2022 年我国氮、磷和钾的养分利用率分别达到 47%、57% 和 66%¹²,相比 2015 年分别提高了 8、13 和 13 个百分点。农业面源污染得到有效治理,农业源水污染物如总氮和总磷等排放量显著下降。有机肥替代化肥成效显著,循环农业蓬勃发展。截至 2020 年,全国有机肥施用面积较 2015 年增长约 50%¹³;有机肥资源利用率也在过去十年中提升了近 20 个百分点 ¹⁴,农田有机质含量和土壤肥力大幅提升。

化肥减量增效工作也有力推动了全产业链的转型发展,提升了行业竞争力与服务能力:

- 生产端: 化肥企业从"产能竞赛"逐步走上结构性转型之路,加速淘汰低效落后产能,提升产能利用率,同时优化产品结构,拓展产品在非农用领域的应用,并加快缓控释肥、水溶肥、微生物肥等新型肥料产品研发和应用。
- 流通环节: 化肥企业持续拓展农化服务能力,逐步改变传统以"生产—批发—零售"为主的分散式农资流通模式, 为农户提供集生产、配销和技术服务于一体的综合解决方案。
- 使用端:多种施肥技术和机具革新,结合超过1.7万个科学施肥社会化服务组织、2000多个智能配肥服务网点,建立起科学施肥技术指导与农技咨询服务体系。农化服务网络逐步覆盖全产业链,并提供涵盖智能化诊断、数字化配肥、机械化施用等集成配套技术的科学施肥服务。

在绿色低碳转型的新趋势下,化肥行业未来发展机遇与挑战并存。唯有协同治理、持续创新与加强合作、方能实现更深层次的结构性变革。

化肥行业绿色低碳转型发展机遇广阔。持续深入的化肥减量化行动将继续扩大生物肥、水溶肥、缓控释肥、土壤 调理剂等新型肥料产品以及智能配肥、机械深施和水肥一体化等科学施肥技术创新与应用的市场需求。

同时,氮肥产业在 "双碳"目标背景下迎来深度转型机遇。传统化肥生产,特别是合成氨和氮肥生产的能耗与碳排放强度较高,原因在于目前合成氨生产仍高度依赖化石能源作为原料和燃料。随着应对气候变化的要求从政策宣示逐渐转入行动落实阶段,合成氨与氮肥行业需实现生产过程的绿色低碳转型。具体而言,关键转型策略包括节能增效、原料替代、燃料替代和末端减排(图表 ES4)。

从全球市场动向来看,基于低碳氨的氮肥市场逐渐升温。可再生能源发电、电解槽技术、生物质资源利用相关产业快速发展,为基于低碳氨的氮肥生产奠定了重要基础。

- 绿电制氢技术将有望形成"绿电—绿氢—绿氨—低碳化肥"的新产业链,支持更多新增产能建设,同时可能驱动产能布局从靠近大型煤炭基地逐步转向可再生能源资源富集区域 ¹⁵。
- 现存的以煤炭、天然气为基础的合成氨产能可通过煤与可再生能源耦合、生物质气化、生物天然气替代等技术路径实现降碳改造。

在此背景下,我国出台《工业领域碳达峰实施方案》《合成氨行业节能降碳专项行动计划》等政策,鼓励引导合成氨行业进行节能降碳改造,采用基于低碳氢的生产工艺。同时,碳市场的进一步扩围将激励合成氨与氮肥行业的绿色低碳转型。

图表 ES4 氮肥产业低碳转型的四大策略

		转型机遇	技术路径	
1	节能增效	通过先进技术部署,提高氮肥生产过程的 能源利用效率	✓ 先进用能设备和工艺装置✓ 余热余压高效利用✓ 数字化、智能化工厂建设	
0	原料替代	使用低碳零碳原料生产低碳氢,并进一步 合成氨与氮肥	✓ 绿电制氢✓ 生物质制氢✓ 含碳废弃物制氢、工业副产氢	
	燃料替代	使用低碳零碳电力和燃料,为生产过程提 供电力和热能	✓ 绿电替代与电气化✓ 绿氢供热✓ 生物质供热	
$ \Psi $	末端减排	削减氮肥生产的剩余排放	☑ 碳捕集、利用与封存(CCUS)	

来源: RMI 分析

化肥行业的绿色低碳转型发展并非一蹴而就,仍需克服一系列挑战。

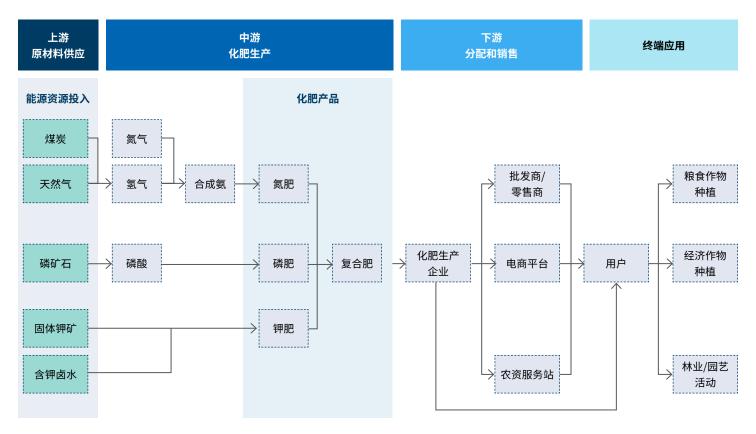
在供给侧,一些新型肥料以及基于低碳氨路线生产的肥料产品,在生产成本和价格上与传统肥料相比仍不具备显著的市场竞争力。部分新产品、新机具仍待出台标准。此外,我国现存的合成氨产能面临一定的转型压力,尤其对于平均运行年份较短的生产设施而言 ¹⁶。

在需求侧,化肥低碳转型带来的额外成本和产品溢价的消化路径仍不清晰,小农户对于存在溢价的农资产品接受度较低。此外,如何通过技术推广、技能培训等方式,调动各类规模经营主体特别是小农户科学施肥仍是重要课题。

展望未来,推动农业投入品的绿色低碳转型,在不断深化国家和地区转型实践的基础上,还需要进一步强化能源体系、工业领域与农业系统的协同治理,持续推进市场机制的创新与优化,以及推动实现更加紧密的国际知识共享与技术合作交流,共同促进全球农食系统向更可持续、更公平、更具韧性的方向迈进。

1、从粮食安全到减量增效: 化肥行业新命题

1.1 化肥行业的基础地位与发展现状


化肥是"粮食的粮食",能够为农作物提供生长所必需的营养元素。作为现代农业发展的基石,化肥通过直接提供高浓度氮、磷、钾等矿质养分,快速弥补自然环境中有效养分的不足,从而能够突破自然条件下作物的产量瓶颈。作为工业产品,化肥也让农民从传统农业的有机肥收集、堆沤等劳动中解放出来,更加高效地为作物提供养分,提升了劳动生产效率。化肥起源于欧洲,是工业革命的产物。化肥行业发展的里程碑事件是 20 世纪初合成氨的哈伯—博施工艺的出现,这奠定了氮肥大规模生产的基础。二战结束后,随着人口快速增长,化肥有力支撑了粮食等重要农产品产量增长。

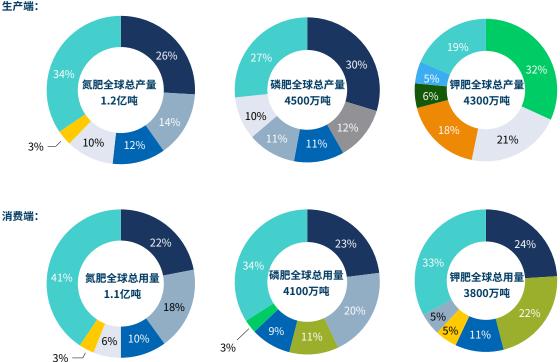
化肥产业链涵盖原材料供应、生产、分销以及终端应用各个环节(图表 1)。氮肥生产其核心在于先制取合成气,随后通过哈伯—博施法反应生成合成氨,并进一步加工为尿素等氮肥产品。磷肥生产则以磷矿石为原料,通过与硫酸反应生成磷酸,再进一步加工成各种磷肥;钾肥则需要固体钾矿或含钾卤水作为钾的来源。氮磷钾单质肥还可以用于进一步生产复合肥料。下游分销和销售环节中,化肥批发商、零售商以及农资服务站等是链接化肥生产企业与用户,特别是传统小农户的桥梁。近年来,互联网电商平台也成为新的化肥分销渠道,化肥生产企业也开始直接为农户提供产品配送与技术指导服务。化肥的终端应用则包括粮食作物和经济作物种植、林业和园艺活动等。

值得注意的是,化肥中的氮肥属于典型的能源密集型和排放密集型产品。在生产端,有研究表明氮肥产量约占每年全球化工产品产量的三分之一 17 。氮肥生产的主要前体——合成氨,高度依赖煤炭和天然气化石能源投入,而全球 70 % 的氨用于氮肥生产。国际能源署(IEA)数据显示,合成氨生产消耗的能源占每年全球约 20 % 的工业天然气需求量(17 00 亿立方米 17 年)和 17 5% 的煤炭需求量(17 500 万吨 17 年),约占最终能源消耗总量的 17 2%(8.6 EJ) 17 6。上述特征导致氮肥成为工业领域单位排放最密集的产品之一,碳排放强度超过粗钢和水泥;从总量来看,全球氮肥行业排放(有机和无机氮肥产品约占 18 5% 全球排放 18 6)与钢铁(工业排放最大来源, 19 7%的全球排放 19 7%,水泥(19 8%)和塑料(19 8%,全球排放 20 9%,处于同一数量级。而在施用端,氮肥在田间施用后,未被植物吸收和存留在土壤中的氮元素会通过多种途径损失,进而通过反硝化等过程导致大量的氧化亚氮(17 8%,以和存留在土壤中的氮元素会通过多种途径损失,进而通过反硝化等过程导致大量的氧化亚氮(17 9%,大气中,使得农用地成为目前全球重要的 17 9%,以 18 9%,以 18 9%,以 17 9%,以 18 9%,以 18 9%,以 17 9%,以 18 9%,以 19 9%,以 18 9%,以 19 9%

ii 采用《IPCC 第五次评估报告》中100年时间尺度下的全球增温潜势。

图表 1 化肥产业链示意

来源: RMI 分析


全球化肥的生产与各国的化工工业发展水平、磷钾等资源禀赋密切相关,化肥的消费则与农业产业发展和人口密切相关。如图表 2 所示,在生产端,2023 年氮肥、磷肥和钾肥产量前五位的国家,其产量之和占全球总产量的比例分别达到 66%、73% 和 81%。而从消费端来看,2023 年化肥施用量排名前五位的国家施用量在全球的占比达到 62%;各国的消费结构也存在较大差异,例如中国、印度和美国最大的施用品种是氮肥,但巴西以钾肥施用为主。

我国化肥生产和消费目前均居世界前列。化肥行业于 20 世纪初在我国萌芽,30 年代大连和南京相继建立了氮肥工厂。建国后,在人口众多、温饱问题尚未解决的背景下,我国极其重视化肥工业发展,自 50 年代起通过技术引进和本土生产,大力发展大中型化肥厂,同时小型土化肥厂在各地迅猛发展,到 60 年代大多数省的县级行政单位均建有氮肥厂。改革开放后,我国化肥工业持续高速发展,80 年代起以尿素为主的氮肥企业继续快速发展,同时磷肥和复合肥使用更加广泛,化肥产品种类不断丰富。经过多年努力,我国化肥产业得到长足发展,已形成涵盖尿素、磷酸二铵、氯化钾、NPK 复合肥等全品类产品的完整产业体系。尿素、磷铵等主要化肥产品从大量依赖进口,到自给有余、出口国际市场。根据联合国粮农组织(FAO)数据,截至 2023 年,我国已成为全球最大的氮肥和磷肥生产国,产量分别占全球的 26% 和 30%;钾肥国内保障能力也不断增强。氮、磷、钾养分施用量均位居全球第一(图表 2)。

图表 2 2023 年分国家化肥生产和消费占比

■ 中国 ■ 印度 ■ 美国 ■ 俄罗斯 ■ 印度尼西亚 ■ 加拿大 ■ 白俄罗斯 ■ 以色列 ■ 徳国 ■ 摩洛哥 ■ 巴西 ■ 其他国家

来源: FAO9

注: 化肥施用总量是氮肥、磷肥和钾肥养分量之和, 其中氮肥以总氮计, 磷肥以 P_2O_5 计, 钾肥以 K_2O 计。以下同。

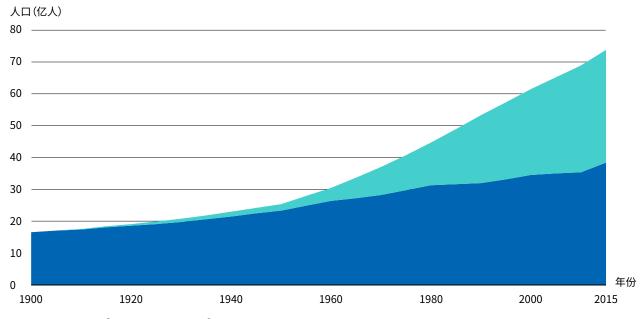
化肥对人口增长和粮食安全的贡献 1.2

化肥施用为保障全球粮食安全和农产品有效供给做出了不可替代的贡献。学界普遍认为化肥施用对作物单产的贡 献十分显著,美国和英国的平均贡献率在 $40\%-60\%^3$,而我国化肥施用对粮食增产的贡献大体也在 40% 以上 4 。 有研究显示,如果发展严格以环境保护为导向的、不使用化肥和其他投入品的农业,粮食生产能力将仅为当前的 1/321。随着化肥施用量的增加,全球粮食产量也在持续增长。图表 3 展示了全球和分地区农用化肥施用量与主要 粮食作物总产量的变化趋势,2023 年全球的农用化肥施用量是 1970 年的 2.76 倍,而三大粮食作物的总产量也大 幅增长到 1970 年的 3.18 倍。值得注意的是,2020 年后,全球主要粮食产量增长与农用化肥施用增长初步实现解 耦,2023年施用量相较2020年下降了5.5%,但粮食产量上升了5.6%。分国家和地区来看,这一趋势依旧普遍 存在,2023年,中国、美国、印度、巴西和西欧的农用化肥施用量相比2020年下降了5.3%—24.2%不等,而 主要粮食作物产量增长了4.1%—23.5%。

化肥有力保障了粮食安全,对全球人口增长和经济社会发展做出了重要贡献。据相关研究估算,2015年全球的 73.8 亿人口中,35.4 亿(约48%)是由氮肥施用增加的食物产量所供养(图表4)。换言之,若没有化肥产业的 蓬勃发展,凭借耕地自身肥力和农业技术条件,全球仅能供养一半的人口。

图表 3 全球和分地区农用化肥施用量与主要粮食作物产量变化趋势

■ 全球农用化肥施用量 ■ 全球主要粮食产量



来源: FAO^{9,22}

注: 主要粮食作物指水稻、小麦和玉米。以下同。

图表 4 氮肥施用对全球人口增长贡献

■ 无氮肥条件下的世界人口 ■ 氮肥对人口增长的贡献

1.3 化肥的不合理施用带来的挑战

全球化肥工业的发展为农业增产发挥了重要的保驾护航作用。化肥从无到有,从少到多,从"不够施"到"过量施",这其中是工业化水平的进步,同时也是"增施增产"理念的盛行,即农业生产者普遍认为增加化肥施用量可获得更高的农作物产量。数十年以来,"增施增产"帮助全球粮食和其它农作物的产量实现跨越式增长。同时也使得全球化肥施用量宏观数据节节攀升,从全球主要的农业生产地区来看,欧洲、北美、亚洲部分发达国家的化肥施用量都具有快速增长直至平台期的变化特征。

然而,化肥的过量或者不合理施用,例如施用的养分比例与作物土壤需求不匹配,给资源环境带来诸多负面影响。 上世纪 60 至 80 年代,欧美日等发达国家地区在粮食增产和农业集约化的背景下,农药、化肥等农业投入品的过 量施用引发了严重的环境问题,《寂静的春天》的出版引发了公众对农业投入品环境风险的广泛关注。从众多研 究发现来看,化肥过量施用主要存在以下方面的问题:

一是造成了资源浪费。诸多研究表明,化肥投入带来的粮食产量增长效应会逐渐削弱^{23,24},即从农业经济学的角度来看,化肥施用的边际报酬会降低。过量的部分对农业生产造成额外成本。以我国为例,2015年三大粮食作物化肥利用率仅35%²⁵,即农田养分的投入量达到作物需要量的近3倍,形成大量的资源浪费。

二是造成了农业面源污染。化肥不合理施用导致氮磷元素大量流失,随地表径流和淋溶进入地表水和地下水,造成水体富营养化。早在上世纪 70 年代,欧洲出现水体富营养化,北美发现硝酸盐污染地下水,日本也暴露出土壤退化和水质恶化的压力。早在 2005 年,原农业部就曾报道,化肥利用率低以及畜禽养殖业和农村生活产生的有机肥源利用不足,对我国水体氮磷富营养化的影响率超过 50% ²⁶。

三是造成土壤退化和污染。研究表明过量施肥会导致土壤板结、土壤酸化、次生盐渍化等土壤退化问题,这不仅 影响作物生长,影响农产品产量和品质,还会带来农产品质量安全风险。例如土壤酸化会诱发土壤重金属离子活 性的提高,增加重金属污染的风险;大量偏施氮肥,产出的作物可能会累积过多的硝酸盐,造成隐性风险。

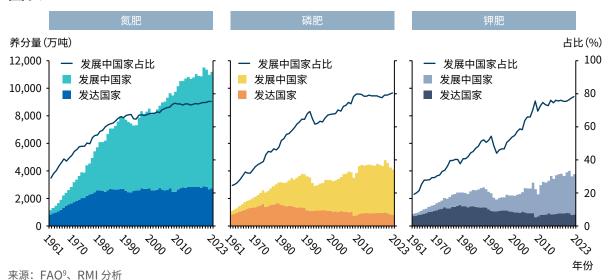
四是进一步推高温室气体排放。化肥生产和施用是全球重要的温室气体排放源。其中,以氮肥为例,其生产需要煤炭、天然气等化石能源的投入;田间施用后,氮元素通过反硝化等过程会形成大量氧化亚氮排放。据研究估算,全球仅氮肥的生产和使用排放就占人为温室气体排放总量的 2% 以上 ¹⁸。

2、 化肥减量增效的国际视角

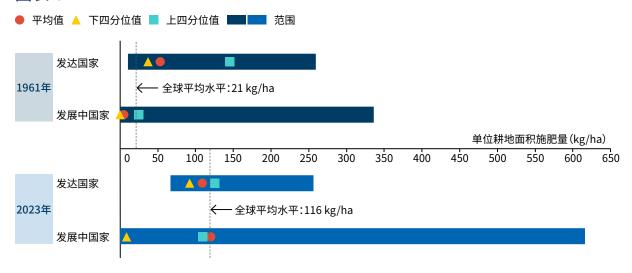
化肥过量施用带来资源浪费、生态破坏、农产品质量下降等问题,因此,单纯的"增施增产"的作物养分管理理 念势必需要转变。"减量增效"因而成为许多国家和地区化肥转型的关键策略。化肥减量增效意味着在保障作物 产出的同时,通过科学手段提升施肥效率、减少化肥施用量,从而实现农业生产的节本增效、生态环保和可持续 发展等多重效益。

然而,面对不断增长的粮食需求和持续提高的生态环境治理要求,化肥施用模式的转型并非一蹴而就,既需要施肥观念的转变、肥料产品的创新、科学施肥技术的推广,也需要可持续农业管理措施和政策法规的完善。在现代农业科学技术与管理措施的助推下,化肥减量增效已经从理论逐步转化为各个国家的农业生产实践,为农业绿色转型提供新动能。当然,全球各国国情差异明显,农业发展阶段不同,因而在化肥施用特征及其减量增效进程方面步伐不一。

2.1 发达国家与发展中国家化肥施用特征的差异

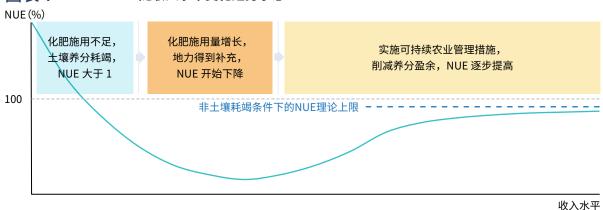

从历史数据来看,发达国家和发展中国家在化肥施用的关键指标上存在明显差异。

在施肥总量上,发展中国家施肥量保持增长态势,而发达国家施肥总量已进入平稳下降阶段。如图表5所示,2023年,发展中国家的氮肥、磷肥和钾肥施用量分别是1961年的26倍、13倍和18倍,在施肥量占比上也在1980年代前后超过发达国家,2023年发展中国家氮肥、磷肥和钾肥的施肥量占比分别约76%、81%和78%。而发达国家的施肥量及占比随时间推移总体保持下降态势,氮肥施用量在1980年代后进入平台期,一直保持在2700万吨左右的水平;磷肥和钾肥施用量则自1980年代起开始稳步下降,2023年磷肥和钾肥施用量相比于峰值水平已分别降低52%和46%。


在单位面积施肥量上,发展中国家已高于发达国家水平。1961年,发展中国家的氮肥、磷肥和钾肥平均单位面积施肥量仅为发达国家的 1/6、1/12 和 1/26。而截至 2023年,发展中国家的单位面积总施肥量已达到 119 kg/ha,超过发达国家平均水平(图表 6)。1961—2023年,尽管发展中国家的耕地面积增长近一倍,然而施肥总量却增长数十倍,使得发展中国家的单位面积施肥量也大大提升。相比之下,发达国家的耕地面积略微下降,而施肥总量仅增长近一倍,因而其单位面积施肥量增长较为温和。

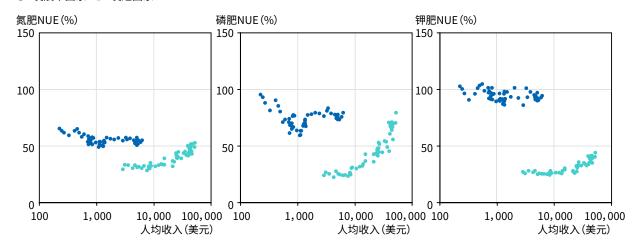
在养分利用效率(Nutrient Use Efficiency, NUE)方面,不同国家 NUE 的巨大分异折射出不同国家土壤养分条件和农业管理水平的分化。理论上,化肥施用量的提升会改善土壤地力耗竭,使 NUE 快速下降;而在化肥过量施用后,采取可持续农业管理措施能够使 NUE 有所回升,因此 NUE 会呈现出随人均收入增长的"U"形变化趋势(图表 7)。统计数据也呈现出发达国家和发展中国家的分化(图表 8),无论是氮肥、磷肥还是钾肥,人均收入相对较低的发展中国家 NUE 中位数较高,而发达国家 NUE 中位数较低。如果看变化趋势,发达国家的 NUE 中位数呈现随时间推移和人均收入增长而攀升的趋势,其中氮肥、磷肥和钾肥 NUE 中位数在 1970—2022 年间分别上升了 24、55 和 17 个百分点;反观发展中国家,其氮肥和磷肥 NUE 中位数在人均收入达到 1000 美元左右的水平(1990 年前后)之前呈现下降趋势,随后有小幅度的回升并处于波动状态,钾肥 NUE 中位数则持续在 90% 上下波动。发展中国家 NUE 维持较高水平仍反映出一定程度的土壤地力耗竭,而发达国家 NUE 保持稳步上升态势的背后,是上世纪未各国普遍开展的化肥减量增效与农业可持续管理行动(详见 2.2 节)。

图表 5 发展中国家与发达国家施肥量(左轴)和占比(右轴)历史趋势



图表 6 发展中国家与发达国家单位面积施肥量对比(1961年与 2023年)

来源: FAO⁹、RMI 分析


图表 7 NUE 随收入水平变化趋势示意

来源: Zhang 等人 27

图表 8 发达国家与发展中国家化肥 NUE 中位数与收入水平变化(1970-2022 年)

● 发展中国家 ● 发达国家

注: 横坐标经对数化处理。 来源: FAO^{12, 28}、RMI 分析

2.2 发达国家化肥减量增效的实践

全球范围内,欧美及日本等发达国家较早地开展了化肥减量工作。这些国家普遍以保护生态环境、促进绿色农业发展、提升农产品质量等为目标,不断探索提升农用化学品利用率、减少投入的农业转型路径。发达国家由于农业基础设施相对完善、农业经营规模化程度较高、政策及市场工具较为多元,因此为全球化肥减量增效积累了较为丰富的政策和实践经验。

欧盟国家在 20 世纪 80 年代出台了"农业环境一揽子计划",鼓励农户优先使用有机肥,并对施用时间、种类和数量作严格规定。1991 年颁布的《硝酸盐指令》强制成员国划定硝酸盐敏感区、设定化肥和粪肥施用上限,即氮素年投入量不得超过 170 公斤 / (公顷·年),并建立水质监测网络。此外,欧盟多国对总氮投入设立限额,如丹麦、法国、荷兰等均规定化肥总投入的上限。这些措施使欧洲农田氮肥面源污染明显改善,欧盟多国地下水硝态氮浓度显著下降。2020 年,欧盟推出"农场到餐桌战略"(Farm to Fork Strategy)以推进农食系统可持续发展,其中提出了化肥使用量在 2030 年前削减 20% 的目标。

美国通过推广多种农业技术措施提升土壤肥力、降低环境压力,同时用政策法规与经济手段激励农民提高管理水平。 20 世纪 80 年代,美国大力推广秸秆还田、施用有机肥和绿肥替代部分化肥等农艺措施,以改善土壤肥力。 2003 年,美国环保署在《清洁水法案》下发布关于集中式畜禽养殖场排污许可的最终规则(final rule),要求其制定养分管理计划对畜禽粪污进行管理,并编制手册指导养殖场科学施用粪肥、替代化肥。同时,美国政府实施最佳管理实践补贴政策,对自愿采用轮作、免耕、适量施肥等农户给予财政补贴和技术支持。 1990 年美国颁布《有机食品生产法案》,通过认证制度和市场机制鼓励有机农业发展,而消费者对有机食品的偏好进一步促进了化肥减量工作的开展。

日本从 20 世纪 90 年代起提出发展"环境保全型"农业,重点减少土壤盐碱化和农用化学品污染。1999 年日本颁布了《持续农业法》《家畜排泄物法》和《肥料管理法》,明确要求减少化肥使用,优先使用堆肥等可再生资源。从 2007 年开始,日本对确定为环保型的农户给予补贴、无息贷款支持和税收减免等优惠政策。从 2011 年开始,日本开始实施"环境保全型农业直接支付制度",对被确认为生态型的农户给予直接补贴,通过经济激励带动更多农户科学施肥,促进化肥减量增效。

从发展成效来看,欧盟、北美、亚洲部分发达国家的化肥施用量都呈现先快速增长、达到峰值后保持稳中有降或 持续下降的趋势。通过创新化肥减量增效技术、制定化肥用量标准和规范、提供有机农业经济补贴等措施,这些 国家逐步走上了减肥增效、高产高效的农业可持续发展之路。

2.3 发展中国家化肥施用的差异化管理措施

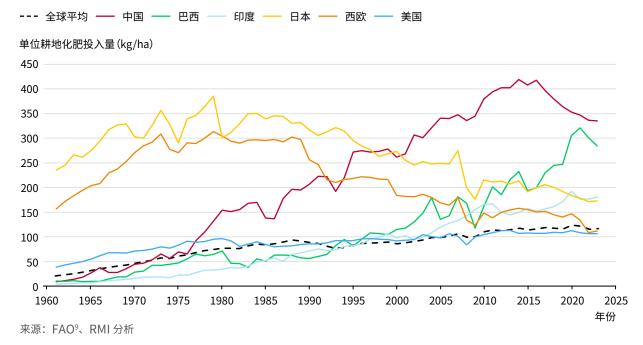
相比发达国家,发展中国家普遍人口众多,粮食及其他农作物消费需求持续增长。但在农业发展水平、化肥用量、 生态环境质量等方面也有显著的国情差异。而不同的国情也使得不同区域发展中国家化肥管理的行动措施各有侧重、 更加异质化。

减量增效在中国、印度等亚洲发展中国家以及部分中东欧发展中国家已成为化肥管理的行动重点。中、印等发展中大国作为人口、粮食和经济作物"重镇",表现出典型的化肥高投入特征,即施肥总量和单位面积施肥量双高。过量施肥情况较为突出,整体养分利用效率相对较低。面对化肥过度施用造成的负面影响,我国自2015年发布《到2020年化肥使用量零增长行动方案》后,已经形成完善的化肥减量增效综合治理体系(详见第三章)。印度在化肥减量增效方面也采取了初步行动,于2015年发起"土壤健康卡计划"(Soil Health Card Scheme),旨在为农民提供基于土壤健康状况的施肥建议,该项倡议有望控制化肥过度施用、提高养分利用效率²⁹。而在中东欧国家,化肥施用与农业发展的环境可持续性长期受到重视,自上世纪90年代以来,中东欧国家采取了更精细和先进的农业管理技术和方法,有效控制了有机农药和化肥的使用量³⁰。

与此同时,确保化肥足量施用仍然是发展中国家农业政策的核心之一。亚洲、拉丁美洲坐落着众多等全球重要的农业生产和出口大国,化肥需求一直保持强劲,因此这些国家普遍采取措施保障化肥的供应和施用。我国长期以来通过宏观调控稳定化肥市场价格和供应(详见第三章),例如 2021 年以来为应对化肥市场波动风险,国家发改委等部门出台化肥保供稳价政策,要求采取提高产能利用率、畅通国内化肥运输配送、稳定能源资源供应等措施 ^{31,32}。在印度,政府自 1950 年代开始就通过价格上限等措施对化肥市场进行管制,此后长期对以尿素为主的化肥提供补贴,显著刺激了氮肥消费量并提升农业产量 ²⁹。巴西长期以来为化肥生产商提供税收和贷款方面的优惠,支持本土化肥企业的发展 ³³,此外巴西在 2022 年通过《国家化肥计划》,计划通过扩张本国化肥产能,到 2050 年将化肥进口占消费比例降至 45% ³⁴;墨西哥政府支持国家石油公司 Pemex 对本土化肥产能进行投资 ³⁵,并通过"福祉化肥计划"(Fertilizers for Well-Being program)免费为小农户分发化肥 ³⁶。

而对于非洲发展中国家而言,提升化肥用量、降低化肥使用成本则可能是短期内更为重要的政策关切。非洲的化肥投入处于极低水平,直至 2023 年,非洲整体的单位面积化肥施用量仅为 22.6 kg/ha³,未实现非洲联盟于 2006年通过的《阿布贾肥料促进非洲绿色革命宣言》中制定的目标(到 2015 年将肥料施用量提升至 50 kg/ha³7)。庞大且快速增长的人口使非洲粮食供应压力巨大,低水平的化肥投入难以维系人民的正常食物消费需求。此外,受制于高昂的运输成本,非洲的化肥成本高达欧洲的四倍之多 38。为解决上述挑战,众多撒哈拉以南非洲国家在上世纪八九十年代以及本世纪先后实施了两次农业投入品补贴计划(Input Subsidy Programs),对农民购买化肥的价格进行补贴 39。扩大化肥的本地生产是非洲国家的另一重点,尤其是尼日利亚等西非国家自 2016 年以来大力推动化肥产业投资、鼓励外资企业投资建设 NPK 复合肥等生产线,带动产能和产量大幅增长 40。此外,国际金融公司、国际货币基金组织等多边机构也针对面临粮食和化肥保供风险的非洲发展中国家提供紧急融资渠道 41。

总而言之,发展中国家化肥管理实践并非单一模式,而是因地制宜、动态演变的。化肥管理政策的制定和实施既 考虑了确保粮食安全和农业生产的需求,也在不断努力兼顾环境可持续性和资源利用效率的目标。


3、我国化肥减量增效的经验与成效

从上世纪 70 年代中期到 2015 年前,即"十二五"末期,我国化肥行业经历了一个长达 40 年的高速发展期,化肥从依赖进口到实现自给自足,粮食等重要农产品供给得到有效保障。进入 21 世纪,长期高强度的化肥投入逐渐暴露出一系列环境问题,为我国实现农业高质量发展带来挑战。在这一背景下,推进化肥减量增效已成为行业所需、形势所迫,是推动农业提质增效、绿色发展的客观要求,也是实现农业和化肥供给侧结构性改革的必由之路。从测土配方到零增长、减量化行动,再到科学施肥增效新技术、新产品、新模式"三新"集成推进,我国逐渐探索出了一条既符合国情、又符合时代发展要求的化肥减量增效之路。

3.1 我国化肥减量增效的现实驱动因素

产出高效和资源节约是现代农业发展的重要特征,这使节本增效成为推动化肥减量化的基本动因。"大国小农"长期以来是我国的基本国情农情。以小农户为主的生产经营模式注重在较短周期、较小经营规模内提升生产效率,过量施肥和不合理施肥现象较为普遍,而这类现象在蔬菜、水果等附加值较高的经济园艺作物种植中尤其突出。从数据来看,长期以来我国单位耕地的化肥投入量远高于国际平均水平(图表 9),这也导致养分利用效率长期偏低。根据 FAO 数据,2015 年我国单位耕地面积化肥投入量约为 409 kg/ha,是全球平均投入量的 3 倍多。而当年我国三大粮食作物化肥利用率仅有 35%,即平均养分投入量达到作物需求量的 3 倍。

图表 9 全球及主要国家单位耕地化肥投入量对比

进入 21 世纪后,我国农业面源污染、土壤退化等问题日益突出,这对农业绿色发展提出了迫切要求。过量施肥导致氮磷元素流失严重,造成水体富营养化,严重影响水生态环境。第一次全国污染源普查公报(2010 年)显示,种植业的总氮和总磷排放分别占全国排放总量的比例高达 34% 和 26%¹⁰。此外,从农业农村部建立的耕地质量监测点位数据来看,自 1988 年点位建立以来,我国土壤有机质、全氮含量整体下降,东北黑土区有机质平均含量显著下降;全国酸性土壤监测点比例持续上升,浙江、江西等局部地区土壤酸化严重;新疆、宁夏、甘肃等西部地区土壤盐渍化现象明显 ⁴²。

经济发展带动社会对于农产品的质量需求不断提升,倒逼农业发展谋求包括化肥减量在内的农业供给侧改革和绿色发展路径。如 1.3 节所述,化肥过量施用可能导致土壤重金属、硝酸盐超标等问题,对农产品质量安全和生态环境构成潜在风险,进而削弱农产品在国际市场上的竞争力,为农业价值链升级带来挑战。2012年,国务院印发《质量发展纲要(2011-2020年)》,明确提出要全面提高质量管理水平,推动建设质量强国。其中,农产品质量安全被放在突出位置。而国际市场对农产品安全性、标准化、可追溯性以及生产过程的环境友好性不断提出更高要求。同时,绿色、有机成为全球食品消费的新趋势,相关认证产品附加值显著提升。此类认证对于化肥的使用有严格限制,例如 1991 年欧盟颁布的《欧盟有机法案》中明确限制有机生产中的化肥使用。截至 2013 年,我国有机食品生产总量占农产品总量的 0.2%,远低于发达国家 1.8% 的水平 43,反映出我国在有机农业上的巨大发展空间。

从化肥行业内部看,"十二五"末期化肥供需结构性矛盾日益凸显,成为推动行业转型发展的重要动因。新型煤气化 "、先进净化与合成等技术和循环流化床锅炉等设备的迭代和推广应用,直接推动了供给端化肥产能的持续快速扩张。"十二五"期间,氮肥总量年均增速保持在 4.5%以上,至 2014 年产能已达 6000 万吨(折纯氮),产量 4553 万吨 46。然而,同期消费端的增长态势显著放缓: 化肥施用增速从 2012 年的 2.4% 骤降至 2015 年的 0.4%,市场需求进入低增长通道,行业供需不平衡情况愈发明显。叠加能源价格大幅上涨,化肥企业生产成本显著增加。尤其对于中小氮肥企业而言,其技术装备相对落后、能耗高、生产规模偏小(2010 年合成氨企业 472 家,平均规模仅 14 万吨,其中规模小于 8 万吨的企业多达 249 家),在能效和成本方面处于明显劣势,导致大量企业面临经营困难,基础肥料市场逐渐沦为"红海"。因此,至"十二五"末期,供需结构性失衡已成为行业核心挑战,通过进一步技术升级淘汰落后产能、优化产业结构成为化肥行业转型发展的必然路径。

综上所述,化肥行业转型发展归因于资源、环境、市场等多方面因素,但全面的减量化工作并非一蹴而就,其序幕早已拉开。为促进农业节本增效并减少农业面源污染,我国自上世纪 90 年代起就已开始推进农药、农膜、化肥等投入品减量化工作,已经积累了较为丰富的技术和政策经验。例如,早在 2005 年我国就启动了第一项农业技术补贴——测土配方施肥补贴 45。经过十年的技术试验及推广,2015 年我国测土配方施肥覆盖率达到 60%,这为后续通过精准施肥提升化肥利用率奠定了技术根基 46。到 2014 年,化肥施用同比增长率已降至 0.4%。另外,如前所述,化肥的减量化工作在欧洲、北美等国家也"有迹可循"。因此,中国在 2015 年提出"到 2020 年化肥使用量零增长"的目标具备较强可行基础。

iii 新型煤气化等技术使得氮肥企业可以使用品质较低、价格较低的非无烟煤进行生产。根据中国氮肥工业协会数据,2015年,采用非无烟煤生产的合成氨、尿素产能占比分别达到 29% 和 30%,相比 2010 年提高 15 个百分点以上。

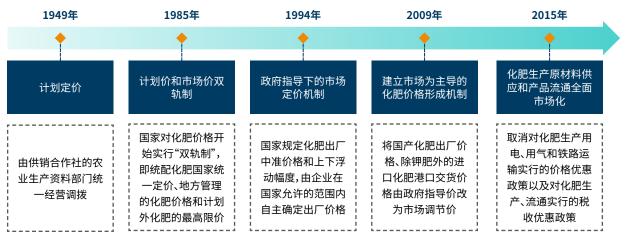
3.2 政策、市场、技术协同成为推动化肥减量增效的重要抓手

自 2015 年开始,我国化肥用量从增长正式进入下降阶段。回顾十年减量之路,这一转变既得益于顶层设计、政策引导与宏观调控,也离不开科技创新、市场驱动与央地协同。一路走来,我国逐步构建起以政策引导为核心、制度约束为保障、技术支撑为基础的综合治理体系。

(一) 政策引导设立约束性目标

我国针对化肥减量增效工作有系统的政策部署。2015年中央1号文件《中共中央国务院关于加大改革创新力度加快农业现代化建设的若干意见》明确指出"在资源环境硬约束下保障农产品供给和质量安全、提升农业可持续发展能力"是当前面临的重大挑战,并对"加强农业生态治理"作出专门部署。同年,政府工作报告也提出了加强农业面源污染治理的重大任务。在此基础上,原农业部(现农业农村部)与工业和信息化部分别从施用与生产两端做出工作部署,明确提出面向 2020 年的发展目标和重点行动:

- 2015年2月,原农业部印发了《到 2020年化肥使用量零增长行动方案》,明确提出"力争到 2020年,主要农作物化肥使用量实现零增长"等一系列目标。
- 2015 年 4 月,原农业部印发了《农业部关于打好农业面源污染防治攻坚战的实施意见》。明确了遏制农业面源污染加剧的总体目标,即到 2020 年实现"一控两减三基本",即控制农业用水总量和农业水环境污染,减少化肥、农药使用,畜禽粪污、农膜、农作物秸秆基本得到资源化、综合循环再利用和无害化处理。
- 2015 年 7 月,工业和信息化部印发了《工业和信息化部关于推进化肥行业转型发展的指导意见》,提出了包括化肥总量、原料结构、节能环保水平在内的一系列 2020 年目标,部署了包括化解过剩产能、调整产品结构等一系列转型升级重点措施。


(二) 充分发挥市场机制对化肥的生产和流通的调控作用

我国在 2015 年开始快速推进化肥价格形成机制市场化进程。化肥作为关系国家粮食安全的特殊商品,其价格长期以来受国家宏观调控。在农业面源污染治理、化肥供需结构矛盾突出的背景下,国家发展改革委等有关部门在前期基础上进一步对化肥的价格形成机制进行市场化改革。

- 2015 年 1 月,国家发改委下发《关于调整铁路货运价格进一步完善价格形成机制的通知》,其中磷矿石整车运输调整为执行 2 号运价,农用化肥调整为执行 4 号运价。
- 2015 年 2 月,国家发改委下发《关于理顺非居民用天然气价格的通知》,明确分步推进化肥用气价格市场化 改革,在过渡期后随其它直供用户价格一并放开。
- 2015 年 4 月,国家发改委下发《国家发展改革委关于降低燃煤发电上网电价和工商业用电价格的通知》,要求逐步取消化肥电价优惠,化肥生产用电执行相同用电类别的工商业用电价格;优惠价差较大的地方,分两步到位,2016 年 4 月 20 日起全部取消电价优惠。
- 2015 年 8 月,财政部、海关总署、国家税务总局联合下发《关于对化肥恢复征收增值税政策的通知》,自当年 9 月 1 日起对纳税人销售和进口化肥统一按 13% 税率征收国内环节和进口环节增值税。原有的增值税免税和先征后返政策相应停止。
- 2016 年 11 月,国家发改委下发《国家发展改革委关于推进化肥用气价格市场化改革的通知》,全面放开化肥用气价格,由供需双方协商确定。

在农业面源污染治理和化肥减量的趋势下,化肥生产原材料价格优惠和流通环节税费优惠的取消表明了政府对于推进化肥市场化改革进程的决心,也无疑是我国充分发挥市场在资源配置中作用的一次重要实践。以氮肥为例,据中国氮肥工业协会 2015 年相关报道,采用无烟煤为原料的氮肥企业,合成氦吨耗电达到 1350 度以上 ⁴⁷。此外中国还有约 24% 的氮肥企业以天然气为原料 ^{iv}。因此,相关优惠政策的退出,短期内势必增加企业生产成本,但长期看有利于行业加速淘汰落后产能,也有利于驱动企业转型升级、调整产品布局,促进化肥行业在缓解供需矛盾的同时实现可持续发展。化肥价格形成机制的改革,也标志着化肥行业从计划管理体制向市场化竞争格局的蜕变(图表 10)。

来源: RMI 分析

在化肥价格外,我国进一步构建和完善涵盖化肥产、供、储、销、施等各环节的市场调控政策体系,促进国内化 肥保供稳价,并支撑化肥减量增效工作系统性开展。

- 进出口调控。政府根据不同阶段的市场供需变化适时调整化肥进出口政策。在国内供给宽松、化肥价格低迷阶段,降低关税可促进出口。例如《2015 年关税实施方案》大幅下调氮肥、磷肥出口关税,并取消了尿素和磷铵出口淡旺季划分,实施全年统一的出口关税政策。而在化肥价格大幅上涨时,适时调控进出口有助于稳定国内化肥市场价格、保障用肥需求。2021 年后,受生产成本上浮、国际市场传导等因素综合影响,国内化肥价格迅速上涨。9月,国家发改委、工信部、海关总署等13部门发布《关于做好今后一段时间国内化肥保供稳价工作的通知》,要求海关严格按规定对进出口化肥实施法定检验,对进口化肥给予通关便利,结合其他措施保障国内供应和价格稳定。
- 化肥储备制度。储备制度是长期以来我国化肥保供稳价的重要手段。以化肥淡季商业储备为例,政府财政对于承储企业在淡季储备化肥的银行贷款给予利息补贴。早在上世纪 90 年代就有专门的化肥淡储中央资金安排。 化肥储备制度经历多年的政策演进与完善,已由原来的中央救灾化肥储备、化肥淡季商业储备、国家钾肥储备三项制度统一整合为"国家化肥商业储备"。
- 农业补贴政策。化肥价格直接影响到农户对于化肥等农资的购买和使用行为,结合农资市场价格走势和粮食生产形势,中央财政安排专项补贴资金缓解农资价格上涨带来的种粮增支影响。从 2002 年起,我国陆续建立了包括农资综合补贴在内的农业补贴体系。在世界贸易组织规则约束及新型农业经营主体发展的背景下,2016 年开始中央财政在全国范围内推行"三补合一"改革,调减 20% 农资综合补贴用于支持耕地地力保护和农业适度规模经营。此外,中央财政还会在农资市场波动时及时安排资金向种粮农民发放一次性补贴。

iv 2011年,我国合成氨生产企业共有394家,其中煤头企业300余家,合成氨产量约占总产量的75%;气头企业70余家,合成氨产量约占总产量的24%;油头企业2家,合成氨产量约占总产量的1%。

(三) 在化肥施用端多措并举推进化肥减量增效

一是明确了"精、调、改、替"的化肥减量增效四条技术路径,即推进精准施肥、调整化肥使用结构、改进施肥方式和有机肥替代化肥(图表 11)。

图表 11 化肥减量增效的"精、调、改、替"四大技术路径

化肥过量原因	科学施肥 技术类型	技术主要内容
盲目和不合理施肥	精准施肥	根据不同区域土壤条件、作物产量潜力和养分综合管理要求,合理制定各区域、作物单位面积施肥限量标准
养分结构失衡 ^v	调整肥料结构	优化氮、磷、钾配比,促进大量元素与中微量元素配合。引导肥料产品优化升级, 大力推广高效新型肥料
人工撒施表施为主要化肥 施用方式	改进施肥方式	研发推广适用施肥设备,改表施、撒施为机械深施、水肥一体化、叶面喷施等方式
过度依赖化肥,有机养分 未充分利用 ^{vi}	化肥多元替代	通过合理利用有机养分资源,用有机肥替代部分化肥。提升耕地基础地力,用耕地内在养分替代外来化肥养分投入

来源: RMI 分析

二是通过农业技术推广、试点示范项目、农业社会化服务等途径实现技术落地。

在技术推广方面,农业部门通过组织"百县千乡万户"科学施肥培训、田间课堂和示范县推广精准施肥技术,面向小农户、新型职业农民、社会化服务组织与基层技术人员开展分级分类培训。此外组织专家分区域、分作物制定化肥减量增效技术方案,制定发布科学施肥技术指导意见,印发化肥科学使用技术手册和宣传挂图,指导农民和新型经营主体掌握化肥减量增效关键技术。

在试点示范方面,我国围绕化肥减量增效逐步形成了从单项技术示范到技术集成试点、从片区试验到整县推进的模式。从 2015 年开始,原农业部分别选择 300 个重点县和 233 个重点县开展化肥减量增效示范和有机肥替代化肥试点,分区域、分作物推广化肥减量增效技术模式,重点推广侧深施肥、种肥同播、水肥一体化等技术,加快技术集成创新。此外,还在东北地区 17 个县开展黑土地保护利用试点,在农作物秸秆总量大和焚烧问题较为突出的地区开展秸秆综合利用试点。"十四五"期间,示范规模进一步扩大,形成了系统化、制度化的县域示范推进机制。以科学施肥增效新技术、新产品、新机具"三新"集成示范为代表,试点示范工作从单项技术向综合方案转型,形成了具有特色的示范模式,有效推动以点带面。截至 2024 年,我国已建设"三新"核心样板区 5000 多个、整建制推进县 363 个 48。

在农业社会化服务方面,农业部门积极推动家庭农场、农民合作社、种植大户、农业企业等新型经营主体开展肥料"统测、统配、统供、统施"四统一社会化服务,推动化肥施用标准化,促进减量增效。

在培育有机肥产业方面,有关部门对有机肥的生产、流通和消费提供全链条激励。2008年财政部、税务总局下发《关于有机肥产品免征增值税的通知》,对有机肥生产流通全环节实行免征增值税的优惠。2013年国务院发布的《畜禽规模养殖污染防治条例》围绕有机肥的项目审批、生产用电、税收、运输以及购买和使用环节给予扶持政策。在原农业部《开展果菜茶有机肥替代化肥行动方案》的框架下,在试点县开展有机肥替代化肥增施有机肥补贴支持行动。2021年,农业农村部选择种植和养殖大县开始实施绿色种养循环农业试点,推动粪肥就近还田利用,构建种养循环新机制。

v 我国施肥结构不平衡的问题一直存在:一是氮肥施用偏多、磷肥和钾肥施用偏少;二是大量元素肥料施用偏多、中微量元素肥料施用偏少。据 FAO 数据分析,2015 年养分氮、磷和钾的总体施用比例为1:0.41:0.38。

vi 我国拥有畜禽粪便、秸秆、园林绿化废弃物等丰富的有机肥资源,但长期以来利用率不足。从原农业部《开展果菜茶有机肥,肥替代化肥行动方案》中表述来看,2017年我国有机肥资源养分总量约为7000万吨,实际利用率不足40%。

三是央地协同、因地制宜推进化肥减量增效工作。

我国不同地区耕地性质、作物类型、气候环境和农业基础设施条件均有较大差异,央地协同、因地制宜开展化肥减量工作十分必要。

- **分区域实施化肥减量策略**。政策设计明确了各地区工作重点和差异化技术方案,例如在东北地区施肥原则为控氮、减磷、稳钾,以保护性耕作、增施有机肥、推广化肥机械深施和水肥一体化技术及高效缓释肥料等为主要技术措施;而在西南地区施肥原则为稳氮、调磷、补钾,以推广配方肥、增施有机肥、发展绿肥种植、推广水肥一体化技术等为主要措施。根据不同区域土壤条件、作物产量潜力和养分综合管理要求,各地根据实际制定不同作物单位面积化肥施肥限量标准。
- **地方先试先行**。基础好的地区率先开展化肥减量,例如上海市早在 2004 年就开展有机肥财政补贴,对生产和使用有机肥按照施用面积大小和购买数量进行一次性补贴。最初全市统一采购 1.5 万吨有机肥作为试点,此后推广数量逐年增加,至 2016 年已达到 23 万吨,补贴资金 4600 万元 ⁴⁹。
- 中央财政专项资金与地方配套资金相结合。例如 2021 年以来,江苏对购置水稻侧深施肥装置的农户提供每台套 5000 元的补贴,在中央财政资金外每年还提供 7500 万元左右的省级财政专项资金,用于推广化肥减量增效相关技术 50。

图表12 中国化肥减量增效工作的综合体系

	生产流通环节 化肥行业		施用环节 农业行业		
」 」 」 目标 」	工业和信息化部 《关于推进化肥行业转型发展的指导意见》		农业农村部(原农业部) 《到2020年化肥使用量零增长行动方案》 《到2025年化肥减量化行动方案》		
	化解过剩产能	调整产品结构	推进精准施肥	调整肥料结构	
路径 路径	技术装备升级	农化服务拓展	改进施肥方式	化肥多元替代	
	技术改造与转型升级专项		农业技术推广与教育培训		
	试点示范建设				
· 措施 · · · · · · · · · · · · · · · · · ·	农业社会化服务体系建设				
	有机肥产业培育				
	化肥价格形成机制市场化改革 进出口调控 化肥储备制度		农资补贴 粮食最低收购价政策		
, — — — , 政策保障	环境准入与执法监管		央地协同与分区施策		

来源: RMI 分析

3.3 化肥减量增效取得显著成效

十年长路,我国在化肥减量增效方面形成了完善的政策体系,在各地各层级开展了广泛实践,在减少化肥用量、 推动农业绿色发展、加速化肥产业转型等方面取得了丰硕成果。

RMI 测算,截至 2024 年,化肥使用量零增长和减量化行动共计避免了约 1.26 亿吨化肥施用量。如图表 13 所示,若延续 2005—2015 年平均增长率(反事实情景),到 2024 年我国化肥施用折纯量可能突破 7400 万吨。而 2015 年启动化肥使用量零增长行动后,全国化肥施用量在当年即达到峰值 6023 万吨,并于 2016 年实现自 1974 年以来的首次下降 ⁵¹,此后连续九年保持下降势头,提前实现了到 2020 年化肥使用量零增长的目标。至 2024 年,全国农用化肥施用折纯量约 4988 万吨,比 2015 年减少 17.2%。与反事实情景相比,我国 2015—2024 年总计避免了约 1.26 亿吨的化肥施用量。

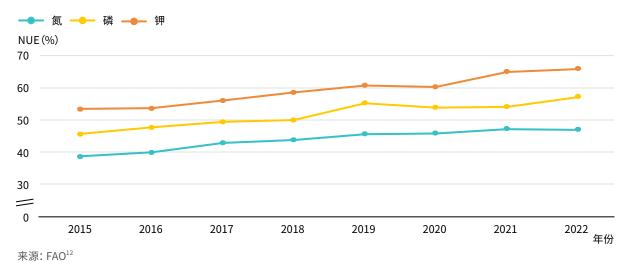
化肥施用零增长与减量并未阻挡我国主要农作物产量继续增长的势头,粮食安全持续得到保障。以粮食、油料、蔬菜和水果为例,从 2015 年到 2024 年,四类农产品的产量分别增长了 7%、17%、30% 和 38%¹¹,表明我国主要农产品产量增长初步与化肥用量增长解耦。

图表 13 中国化肥零增长与减量化行动的成效

化肥减量增效有力推动了我国农业高效、绿色发展。具体而言:

• 养分利用率显著提高。根据 FAO 数据,我国氮、磷和钾 NUE 相比 2015 年分别提高了 8、13 和 13 个百分点,达到 47%、57% 和 66%(图表 14),表明我国肥料养分利用更加高效。肥料 NUE 提高是多年来先进施肥技术和相关模式有效推广的成果,而这背后是原农业部(现农业农村部)全国农业技术推广服务中心等单位体系以及一批农化服务企业的持续工作。测土配方施肥技术覆盖面持续扩大,截至目前,测土配方施肥技术覆盖率达到 90% 以上,三大粮食作物测土配方覆盖率超过 95%52。机械施肥和水肥一体化技术模式快速发展,机械施肥超过 7 亿亩次,水肥一体化技术推广面积达到 1.4 亿亩次 25。

- 农业面源污染得到有效治理。化肥施用量的下降与利用率的提升减少了养分盈余和流失到环境中的比例,因而从根源上缓解了农村面源污染的情况。2017 年第二次全国污染源普查结果显示,与第一次普查相比,农业源水污染物排放量明显下降,总氮和总磷排放量分别下降了 48% 和 26%,其中种植业的总氮和总磷排放量分别下降 55% 和 29%^{10,53}。有研究分析表明,黑龙江、山东、江苏等十三个粮食主产省的面源污染排放总量和排放强度 vii 在 2015—2020 年间分别下降了 14% 和 15%⁵⁴。
- **绿色低碳循环的农业产业蓬勃发展**。自 2021 年启动绿色种养循环农业试点后,粪肥还田替代化肥成效初显,试点县累计减少化肥用量 32 万吨,此外还产生土壤固碳增汇、改善作物养分供应结构、促进农作物增产提质、带动粪肥还田市场良性发展、增加种植户收入等多方面协同效益 55。截至 2020 年,全国有机肥施用面积已超过 5.5 亿亩次,较 2015 年增长约 50%¹³;有机肥资源利用率也在过去十年中提升了近 20 个百分点 ¹⁴,农田有机质含量和土壤肥力大幅提升。


化肥减量增效工作也有力推动了化肥全行业的转型发展,提升了行业竞争力与服务能力:

- 生产端,在化肥减量化、供给侧结构性改革等宏观政策引导以及市场自发行动下,传统化肥企业从"产能竞赛"逐步走上结构性转型之路,在加速淘汰低效落后产能的同时优化产品结构。从成效上看,产能利用率较低的状况明显改善,以尿素和磷肥为例,2016 年二者的产能利用率分别为 70% 和 49%56,而 2022 年分别提高至88%57 和 71%58。在产品结构调整上,化肥企业一方面加速拓展产业领域,发展复合肥料,依托现有资源加大对煤化工、磷化工、钾精细化工等产品的开发力度,并拓展产品在非农用领域的应用。例如,2020 年,合成氨的工业用量已占总体消费量的 30%,未来需求有望继续上升59;另一方面,企业也高度重视对新型肥料证产品研发和应用的支持,例如目前我国生物肥料企业数量已超过 4500 家,年产值超过 400 亿元,应用面积累计近 45 亿亩 60;缓控释肥年产能超 800 万吨,全球市场占有率超 50%61。另外,行业节能环保改造也成效显著,"十三五"期间各地化肥、化工企业退城入园,一批环保不达标的企业被关停,而企业在搬迁和异地建厂的过程中完成设备与技术升级,综合节能减排幅度提高 20—30 个百分点 62。总体来看,化肥生产侧的结构性转型为全产业链的绿色高效发展提供了内生动力,也显著改善了行业利润率。
- 流通环节,化肥减量化行动推动了产品流通和农化服务体系的系统性变革。为推广新型高效肥料产品和先进施肥技术,并满足规模经营主体日益增长的用肥需求,化肥企业与大型经销商开始整合产品流通环节与终端需求场景,持续拓展农化服务能力,为农户提供集生产、配销和技术服务于一体的综合解决方案,直接指导农户科学使用化肥、减少化肥用量并促进新型肥料产品的应用,从而改变了传统以"生产—批发—零售"为主的分散式农资流通模式。
- 需求端,如前所述,在化肥减量化政策推进与规模经营主体兴起的背景下,需求端与流通环节加速整合,推动化肥产业链向上下游协同化、一体化方向持续演进。与此同时,数字化与社会化服务不断深入农业生产,社会化服务组织逐步承担起先进施肥技术推广与统配统施的职能,通过将测土配方施肥与套餐肥配送相结合,建立科学施肥技术指导与农技咨询服务体系,形成覆盖全产业链的农化服务网络。数据显示,全国新培育科学施肥社会化服务组织超过 1.7 万家,智能配肥服务网点 2000 多个 50。需求端的这些深刻变化,为提升化肥利用效率、促进农业绿色发展提供了重要支撑。在此过程中,企业通过并购整合、与农业科技公司及服务组织加强合作,不断优化资源配置与服务能力。产业链上下游的协同效率,已成为衡量企业综合竞争力的新标尺。

vii 面源污染排放总量指总氮和总磷排放量,排放强度指单位种植面积的污染物排放量。

viii 当前我国新型肥料产品类型主要包括缓/控释肥料、增值肥料、水溶肥料、商品有机肥、微生物肥料等,其通过优化养分供应、强化根系吸收、增强作物抗逆、调节代谢等过程,获得更高的养分利用效率。

图表 14 我国氮磷钾 NUE 历史趋势(2015—2022 年)

专栏 1: 技术、服务与行业协作三轮驱动,中化农业助力化肥减量增效

在农业绿色发展与化肥零增长行动背景下,中化农业依托自身领先的技术与服务模式,探索出一条兼顾化肥减量、粮食安全、农民增收和生态保护的可持续发展路径。面对小农户分散经营、技术水平低、劳动力短缺等现实挑战,中化农业整合全产业链资源,研发推广以"良种+良法"为核心的全程种植解决方案,解决农民"如何种好、如何卖好"两大核心痛点。

中化农业的化肥减量增效实践主要从技术创新、服务模式变革和行业协作三个维度展开:

- 在技术层面,中化农业重点研发推广了核心母粒增效技术以及缓控释肥、水溶肥、有机肥等新型肥料产品,并通过测土配方施肥、机械施肥、水肥一体化等先进施肥技术提高养分利用率。
- 在服务模式上,中化农业自 2017 年起创新性地推出现代农业综合服务平台(Modern Agriculture Platform, MAP),致力于推广应用全程种植技术解决方案,帮助农户实现化肥减量增效。MAP 构建了集技术服务中心、研究与示范农场、基层农艺师队伍为一体的全国农业服务网络,为农户提供品种规划、测土配肥、定制植保、农机服务、技术培训等多元化技术服务,覆盖耕地面积超过 3300 万亩。其开发的"MAP 智农"数字平台结合遥感监测和精准气象数据,可帮助农户实现施肥方案的动态优化。
- 在行业协作上,中化农业于 2017 年牵头组建了国家化肥减量增效科技创新联盟。这一联盟汇聚了包括中国农业科学院、云南云天化等 25 家国内顶尖农业科研院所和领先企业,构建了"产学研"一体化的协同创新平台。联盟以落实《到 2020 年化肥使用量零增长行动方案》为目标,重点开展肥料产品创新、施用技术优化和推广模式创新三大方向的工作。在实际运作中,联盟建立了高效的协同研发机制,将实验室成果快速转化为田间应用,如研发的磷钾增效技术和氮缓释技术使养分利用率提升 5%—10%,减肥幅度达 10%—15% 且保障作物产量。

经过多年实践,中化农业的化肥减量增效工作取得了显著成效。在 2023 年的调研中,MAP 农户的化肥利用效率显著高于非 MAP 农户;核心母粒技术推广区域实现减肥超过 15000 吨,水稻侧深施肥技术在黑龙江建三江地区推广 300 万亩,不仅亩均减肥 3—4 公斤,还实现了亩均 60—70 公斤的增产。化肥减量增效有力带动农业绿色转型,例如山东 MAP 农场的创新模式使氮输入减少 27%,N,O 排放降低近 40%。

资料来源: 先正达集团中国 63、公开信息

4、未来化肥行业转型的机遇和挑战

化肥减量增效已取得长足进展,而新的时代背景和发展趋势正在推动行业持续转型升级。随着国民生活水平的提高和对高质量农产品的需求增长,以"大农业观、大食物观"为指引的现代农业将迈入新阶段,而化肥行业将继续有力支撑我国粮食安全。在绿色高质量农业发展、应对气候变化、推进能源转型等新趋势下,化肥行业的未来发展机遇与挑战并存。

4.1 化肥行业绿色低碳转型发展机遇广阔

首先,持续深入的化肥减量化行动将继续扩大新型肥料产品和科学施肥技术创新与应用的市场需求。在新产品上,生物肥、专用肥、水溶肥、缓控释肥、功能型肥料、土壤调理剂等产品能够补充乃至替代基础化肥产品,满足农作物多元化养分需求。在科学施肥技术上,智能配肥、机械深施和水肥一体化等施肥技术和方式逐步替代传统的表施、撒施等粗放模式,配合适用的施肥农机设备与新型肥料产品,能够有效提高养分利用效率,同时改善耕地质量和减少面源污染。

同时,氮肥产业在应对气候变化与"双碳"目标背景下迎来深度转型机遇。传统化肥生产,特别是合成氨和氮肥生产的能耗与碳排放强度较高,原因在于目前合成氨生产仍高度依赖化石能源作为原料和燃料。全球来看,以煤炭和天然气为原料的合成氨产量分别约占 30% 和 70%⁷,而中国的这一比例分别为 76% 和 21%^{15, ix}。随着应对气候变化的要求从政策宣示逐渐转入行动落实阶段,合成氨与氮肥行业需实现生产过程的绿色低碳转型。具体而言,关键转型策略包括节能增效、原料替代、燃料替代和末端减排(图表 15):

- 节能增效:通过部署先进技术,提高合成氨和氮肥生产过程的能源利用效率。在合成氨生产过程中,可通过推广先进工艺技术、先进用能设备和新型高效催化剂等技术措施,来提升能源利用和氨合成效率。余热余压高效利用则是对氨生产系统的进一步优化,通过回收利用中低品位余热和副产品,氨合成系统的效率可进一步提升。此外,数字化、智能化技术可赋能工厂进行能耗精准管理。合成氨与氮肥作为高耗能行业,在中短期内可优先考虑采取节能增效这一类经济可行性高、减排效果可观的转型举措。
- 原料替代:使用低碳零碳原料替代煤炭和天然气,生产低碳氢并进一步合成低碳氨与氮肥。目前,用于制备合成氨的氢气几乎全部来自于煤气化或天然气转化过程,因而产生碳排放,而使用低碳氢替代化石能源产氢将降低这部分排放。低碳氢既可以来自风电、光伏发电等绿色电力电解水的过程,也可以来自生物质、含碳废弃物、工业副产氢等。
- 燃料替代:使用低碳零碳电力和燃料,为生产过程提供提供电力和热能。化石能源在合成氨和氮肥生产过程中除作为原料之外,也作为燃料为反应过程提供能量,这部分的碳排放也不容忽视。使用绿色电力替代化石能源电力,结合生产过程的电气化改造,是降低电力相关排放的关键措施。同时,使用生物质和绿氢提供电加热无法提供的高温热源、替代煤炭和天然气供热,是降低热力相关排放的重要举措。
- 末端减排: 合成氨与氮肥生产的剩余排放难以通过以上技术措施消除,以碳捕集、利用与封存(CCUS)技术进行减排是实现行业完全脱碳的"最后一公里"。通过捕集生产过程的碳排放并进行商业化利用或封存,合成氨与氮肥生产可实现末端减排。

ix 中国还有少部分的氨是以焦炉煤气为原料制得。

图表 15 氮肥产业低碳转型的四大策略

ナナエリナロト田

		转型机遇	技术路径	
	节能增效	通过先进技术部署,提高氮肥生产过程的 能源利用效率	✓ 先进用能设备和工艺装置✓ 余热余压高效利用✓ 数字化、智能化工厂建设	
0	原料替代	使用低碳零碳原料生产低碳氢,并进一步 合成氨与氮肥	✓ 绿电制氢✓ 生物质制氢✓ 含碳废弃物制氢、工业副产氢	
(A)	燃料替代	使用低碳零碳电力和燃料, 为生产过程提 供电力和热能	✓ 绿电替代与电气化✓ 绿氢供热✓ 生物质供热	
V	末端减排	削减氮肥生产的剩余排放	☑ 碳捕集、利用与封存(CCUS)	

++ -12 06 47

来源: RMI 分析

从全球市场动向来看,基于低碳氨的氮肥市场也正在升温,部分市场"先行者"已开始关注基于低碳氨的氮肥产品,并率先达成合作(图表 16)。在供给端,中国、欧洲和美国化工与能源领域的领先企业已经布局低碳氨产能,生产路线包括天然气重整结合 CCUS 制氨以及利用可再生能源制绿氢和合成氨两类。而需求端有食品、农业、贸易领域的企业与上述生产商达成合作,在自身业务中应用或为下游客户提供低碳氨与氮肥产品。这些企业的合作带动了基于低碳氨的氮肥市场的早期发展,为下一步市场规模扩张、技术成本下降、应用范围扩大奠定了重要基础。

来源: 公开信息整理

作为全球最大的合成氨与氮肥生产国和消费国,我国也在积极谋划和推动合成氨与氮肥行业的绿色低碳转型。在政策层面,自我国提出"双碳"目标以来,各部门陆续出台《工业领域碳达峰实施方案》《合成氨行业节能降碳专项行动计划》等政策,鼓励引导合成氨行业进行节能降碳改造,采用基于低碳氢的生产工艺。2025 年 8 月,国家发布《关于推进绿色低碳转型加强全国碳市场建设的意见》,明确提出到 2027 年,全国碳排放权交易市场基本覆盖工业领域主要排放行业,届时合成氨等化工行业有望进入全国碳市场,进一步激励合成氨与氮肥行业的绿色低碳转型。

近年来我国光伏发电、风电等可再生能源以及电解槽技术快速发展,加之丰富的生物质资源和相关产业发展,为基于低碳氨的氮肥发展奠定了重要基础。现存的以煤炭、天然气为基础的合成氨产能可通过煤与可再生能源耦合、生物质气化、生物天然气替代等技术路径实现绿色低碳转型。而绿电制氢成本的进一步下降将驱动更多可再生能源制氢制氨项目的建设,形成"绿电—绿氢—绿氨—低碳化肥"的新产业链 15。

专栏 2: 雅苒(YARA)率先布局低碳化肥市场,与多家企业达成合作

雅苒(Yara)是一家成立于 1905 年的挪威跨国企业,是全球领先的肥料生产商和供应商。雅苒是目前全球范围内较早涉足低碳化肥的头部企业。目前雅苒已经在全球落地了多个减碳项目,包括成立清洁氨部门、建立可再生氨工厂、发起并加入农业与食品应对气候变化企业联盟等。

目前,雅苒已经计划在荷兰 Sluiskil,挪威 Porsgrunn 和巴西 Cubatão 开始生产低碳化肥。包括百事、辛普森麦芽公司、巴西最大的咖啡合作社 Cooxupé 等在内的一些大型农业和食品公司已经开始采购、或与雅苒达成低碳化肥产品的合作意向,将涉及面包、薯片、咖啡、啤酒及威士忌等不同食品品类。例如雅苒国际和百事公司欧洲(PepsiCo Europe)在 2024 年 7 月宣布达成长期合作。2030年之前,雅苒每年会向百事公司提供约 16.5 万吨的低碳肥料产品,满足其在欧洲 25%的作物肥料需求。这些肥料包括部分由可再生氨或采用 CCS 技术的低碳氨生产的低碳肥料,以及一些使用天然气生产结合催化剂技术的硝基肥产品。

雅苒的气候选择肥料(Climate ChoiceTM Fertilizer)系列产品,主要包括天然气基合成氨结合碳捕集和封存(CCS)技术生产的的低碳化肥,和颠覆性的由可再生原料(如由可再生电力驱动的电解氢或生物天然气)制成的可再生低碳化肥。

雅苒开始在巴西圣保罗 Cubatão 利用甘蔗废料等有机废物制成的生物天然气以替代化石天然气来制备可再生氨。雅苒巴西公司总裁 Marcelo Altieri 表示: 仅在咖啡种植方面, 预计收获咖啡豆的碳足迹将减少多达 40%。

来源: YARA 官网

4.2 化肥行业转型发展仍需克服一系列挑战

绿色低碳转型是化肥行业高质量发展的必由之路。然而转型并非一蹴而就,肥料行业把握绿色低碳发展的广阔机 遇仍需克服一系列挑战。

首先,成本与经济性是行业转型面临的现实挑战。从供给侧看,对于传统化肥企业而言,开展新产品研发、拓展产品和服务都需要企业持续的资金投入。一些新型肥料以及基于低碳氨路线生产的肥料产品,在生产成本和价格上与传统肥料相比仍不具备显著的市场竞争力。根据 RMI 的测算,以离网绿电制取绿氢路线生产的合成氨,当前成本约为煤制合成氨路线的 2 倍以上,而仅依靠技术进步和规模经济实现成本下降,绿氨预计到 2040 年后才有望与灰氨实现成本平价 ¹⁵。此外,现存的高能耗、高排放的合成氨产能面临一定的转型压力和风险,特别是对于平均运行年份较短的"年轻"生产设施而言 ¹⁶。如果在环保和降碳的压力下提前淘汰这些产能,若没有合理的补偿机制,这部分产能将无法回收投资。而从需求侧看,化肥是农业发展的必需品,农民对于存在溢价的农资产品接受度较低,转型带来的额外成本和产品溢价在农业领域如何消化仍不清晰。未来,化肥行业需要通过技术创新和规模化发展,以及政策扶持与绿色低碳价值实现机制等方式降低新技术成本和新产品溢价。

除成本因素以外,化肥行业的转型还面临一些非成本因素的挑战。一是施肥主体的动员问题。尽管种植大户等新型经营主体的出现为化肥减量增效和新型绿色低碳肥料的推广提供了良好条件,但小规模家庭经营仍在较长时期内是我国农业生产的基本面。未来还需要通过技术推广、技能培训、试点示范、企业与农民合作等方式,让科学施肥理念深入人心,从整体上提升我国土壤养分管理水平,进一步推动化肥减量增效。二是化肥企业的能力建设问题。随着乡村生态振兴、化肥减量化行动的深入以及不断收紧的环保和低碳政策要求,化肥企业需要时刻把握政策与行业脉搏,不断革新自身产品与服务,并做好内部制度与能力建设,才能在转型浪潮中不被淘汰。三是相关市场标准的完善问题,低碳合成氨、新型肥料、智能施肥农机设备等新产品仍需主管部门出台标准,为市场规范运行和健康发展夯实基础。

结语

化肥作为保障粮食安全的重要农业投入品,其行业转型对于实现全球农业可持续发展和减缓气候变化至关重要。过去十年,中国化肥行业走出了一条链接生产与施用两端、跨越工业和农业的系统转型发展之路。这一进程证明了"大国小农"背景下农业系统转型的可行性:不仅实现了粮食安全与环境保护的协同,也推动了农业绿色转型理念在全国范围内的落地与深化。从国家顶层设计到地方基层实践,从科技创新到农户参与,中国的探索为全球可持续发展提供了独具价值的样本,为国际社会提供可借鉴的路径与启示。

然而,化肥行业转型远未结束。当前,全球范围内气候变化持续加剧,洪水、干旱等极端天气事件频发进一步给 全球粮食安全及实现零饥饿等可持续发展目标带来严峻挑战。在应对气候变化与保障能源安全、粮食安全等重大 议题交织的复杂局面下,化肥的绿色低碳转型将进一步成为推动全球可持续发展与气候行动的重要支撑。

唯有协同治理、持续创新与全球合作,方能实现更深层次的结构性变革与多维度共赢。展望未来,推动农业投入 品的绿色低碳转型,在不断深化国家和地区转型实践的基础上,还需要进一步强化能源体系、工业领域与农业系 统的协同治理,持续推进市场机制的创新与优化,以及推动实现更加紧密的国际知识共享与技术合作交流,携手 迈向一个更加绿色、韧性与公平的未来。

参考文献

- United Nations, Department of Economic and Social Affairs, Population Division, World Population Prospects 2024, 2024, https://population.un.org/wpp/
- 2 FAO, IFAD, UNICEF, WFP and WHO, The State of Food Security and Nutrition in the World 2024 Financing to end hunger, food insecurity and malnutrition in all its forms, 2024, https://doi.org/10.4060/cd1254en
- 3 Stewart, W.M., Dibb, D.W., Johnston, A.E. and Smyth, T.J. (2005), The Contribution of Commercial Fertilizer Nutrients to Food Production. Agronomy Journal, 97: 1-6. https://doi.org/10.2134/agronj2005.0001
- **4** 农业部,到 2020 年化肥使用量零增长行动方案,2015 年,https://www.moa.gov.cn/ztzl/mywrfz/gzgh/201509/t20150914_4827907.htm
- 5 Erisman, J., Sutton, M., Galloway, J. et al. How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636–639 (2008). https://doi.org/10.1038/ngeo325
- 6 Our World in Data, World population supported by synthetic nitrogen fertilizers, https://ourworldindata.org/grapher/world-population-supported-by-synthetic-nitrogen-fertilizers
- 7 International Energy Agency, Ammonia Technology Roadmap, 2021, https://www.iea.org/reports/ammonia-technology-roadmap
- **8** Tian, H., Xu, R., Canadell, J.G. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020). https://doi.org/10.1038/s41586-020-2780-0
- 9 Food and Agriculture Organization of the United Nations, Fertilizers by Nutrient, https://www.fao.org/faostat/en/#data/RFN
- 10 环境保护部,国家统计局,农业部,第一次全国污染源普查公报,2010年,https://www.stats.gov.cn/sj/tjgb/qttjgb/202302/t20230218_1913282.html
- 11 国家统计局, 国家数据 农业, https://data.stats.gov.cn/easyquery.htm?cn=C01
- 12 Food and Agriculture Organization of the United Nations, Cropland Nutrient Balance, https://www.fao.org/faostat/en/#data/ESB
- **13** 农业农村部, 化肥农药使用量零增长行动取得明显成效, 2021年, https://jhs.moa.gov.cn/ghgl/202107/t20210716_6372084.htm
- **14** 经济日报,"生态包袱"变"绿色财富"——有机肥产业规模持续扩大,2025年,**https://www.farmer.com.** cn/2025/07/28/99993497.html
- **15** 落基山研究所,石化联合会氢能专委会,加速化工行业低碳转型之:实现绿氨经济性的可行路径,2024年, https://rmi.org.cn/insights/green-ammonia-report/
- 16 International Energy Agency, Energy Technology Perspectives 2020, 2020, https://www.iea.org/reports/energy-technology-perspectives-2020
- 17 Levi, Peter G., and Jonathan M. Cullen. Mapping Global Flows of Chemicals: From Fossil Fuel Feedstocks to Chemical Products. Environmental Science & Technology 52, 4 (2018): 1725–34. https://doi.org/10.1021/acs.est.7b04573
- 18 Gao, Y., Cabrera Serrenho, A. Greenhouse gas emissions from nitrogen fertilizers could be reduced by up to one-fifth of current levels by 2050 with combined interventions. Nature Food 4, 170–178 (2023). https://doi.org/10.1038/s43016-023-00698-w
- 19 Hertwich, E.G. Increased carbon footprint of materials production driven by rise in investments. Nature Geoscience 14, 151–155 (2021). https://doi.org/10.1038/s41561-021-00690-8
- 20 Zheng, J., Suh, S. Strategies to reduce the global carbon footprint of plastics. Nature Climate Change 9, 374–378 (2019). https://doi.org/10.1038/s41558-019-0459-z

- 21 International Food Policy Research Institute, Biophysical limits to global food production (2020 Vision), 1995, https://ageconsearch.umn.edu/bitstream/16325/1/br18.pdf
- 22 Food and Agriculture Organization of the United Nations, Crops and livestock products, https://www.fao.org/faostat/en/#data/QCL
- 23 Tilman, D., Cassman, K., Matson, P. et al. Is fertilization efficiency misleading? Nature 422, 398 (2003). https://doi.org/10.1038/422398a
- **24** 麻坤,刁钢,化肥对中国粮食产量变化贡献率的研究 [J]. 植物营养与肥料学报,2018,24 (04):1113-1120, doi: 10.11674/zwvf.17375
- 25 农业农村部,我国三大粮食作物化肥农药利用率双双超 40%, 2021 年, https://kjs.moa.gov.cn/gzdt/202101/t20210119 6360102.htm
- 26 农业部,盲目过量施肥带来三大危害,2005年,https://www.moa.gov.cn/ztzl/ctpfsf/jyjl/200504/t20050407_351581.htm
- 27 Zhang, X., Davidson, E., Mauzerall, D. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015). https://doi.org/10.1038/nature15743
- 28 Food and Agriculture Organization of the United Nations, Macro Indicators, https://www.fao.org/faostat/en/#data/MK
- 29 Sapkota, T.B., Bijay-Singh. India's fertilizer policies: implications for food security, environmental sustainability, and climate change. Regional Environmental Change 25, 63 (2025). https://doi.org/10.1007/s10113-025-02395-9
- **30** "一带一路"绿色发展国际联盟,"一带一路"环境技术交流与转移中心(深圳),"一带一路"环境政策法规标准蓝皮书(中东欧篇),2021年.
- **31** 国家发展改革委等,国家发展改革委等部门关于做好今后一段时间国内化肥保供稳价工作的通知,2021年, https://www.ndrc.gov.cn/xwdt/tzgg/202109/t20210924_1297368.html?state=123
- **32** 国家发展改革委,国家发展改革委关于做好 2025 年春耕及全年化肥保供稳价工作的通知,2025 年, https://www.ndrc.gov.cn/xxgk/zcfb/tz/202502/t20250208_1396053.html
- **33** 李忠义. 巴西美国化肥的产销及价格情况 [J]. 价格月刊, 1988, (11): 29-33+20. DOI:10.14076/j.issn.1006-2025.1988.11.009.
- 34 Government of Brazil, Brazilian Government launches National Fertilizer Plan to reduce input imports, 2022, https://www.gov.br/en/government-of-brazil/latest-news/2022/brazilian-government-launches-national-fertilizer-plan
- 35 自然资源部, Pemex 投资提高墨西哥化肥自给率, 2025 年, https://geoglobal.mnr.gov.cn/zx/kygs/kygsrtz/202502/t20250218_9253964.htm
- 36 Fertilizer Daily, Mexican Ministry of Agriculture distributes 70,000 tons of free fertilizer to over 157,000 producers, 2025, https://www.fertilizerdaily.com/20250514-mexican-ministry-of-agriculture-distributes-70000-tons-of-free-fertilizer-to-over-157000-producers/
- 37 International Fertilizer Development Center, Implementation of the Abuja Declaration on Fertilizer for an African Green Revolution, 2023, https://sia.faraafrica.org/wp-content/uploads/2025/03/Implementation-of-the-Abuja-Declaration-on-Fertilizer-for-an-African-Green-Revolution-.pdf
- **38** 《联合国气候变化框架公约》秘书处,秘书处的研讨会报告:改善养分使用和粪肥管理,逐步建设可持续和有抗御力的农业系统,2020年,https://unfccc.int/sites/default/files/resource/sb2020_01C.pdf
- **39** Thomas S. Jayne et al,. Review: Taking stock of Africa's second-generation agricultural input subsidy programs. Food Policy 75, 1-14 (2018). https://doi.org/10.1016/j.foodpol.2018.01.003
- **40** 张晓珍,苗扬,[期货日报]西非地区化肥市场面临的瓶颈与挑战,2023年,https://www.cfachina.org/inv/index/mtkqs2/202307/t20230726_48070.html
- **41** World Bank, A transformed fertilizer market is needed in response to the food crisis in Africa, 2022, **https://blogs.worldbank.org/en/voices/transformed-fertilizer-market-needed-response-food-crisis-africa**
- **42** 农业农村部耕地质量和农田工程监督保护中心,《耕地质量动态》2020 年第 1 期: 耕地质量中心发布 30 年耕地质量监测数据,2020 年,http://www.gdzl.agri.cn/gzjl/gdzldt/202002/t20200214_345195.htm

- **43** 李显军 , 中国有机农业发展现状与展望 , 2016 年 , https://www.law.osaka-u.ac.jp/c-forum/box5/vol8/lixianjun(c).pdf
- **44** 工业和信息化部 , 工业和信息化部关于推进化肥行业转型发展的指导意见 , 2015 年 , https://www.gov.cn/zhengce/2015-07/20/content_5023694.htm
- **45** 田家贵,大力推广测土配方施肥促进农业发展方式转变,2010年,https://www.moa.gov.cn/ztzl/ctpfsf/jyjl/201005/t20100507_1481336.htm
- **46** 何山, 孙媛媛, 沈掌泉, 王珂. 大数据时代精准施肥模式实现路径及其技术和方法研究展望 [J]. 植物营养与肥料学报, 2017, 23(6): 1514-1524. doi: 10.11674/zwyf.17317
- **47** 《中国农资》周报 , 化肥电价优惠逐步取消 : 引发企业阵痛 市场化进程在加快 , 2015 年 , **http://www.zh-hz.** com/dz/zgnz/html/2015-04/24/content_105600.htm
- **48** 张宪法 , 扎实推进科学施肥增效 助力农业绿色高质量发展 , 2025 年 , https://www.toutiao.com/article/7488932213824717321/
- 49 郑利杰, 张笑千, 王波. 化肥有机肥补贴政策演变过程及配套技术初探[J]. 世界环境, 2018, (04): 30-35.
- 50 人民日报,我国三大粮食作物化肥利用率达 42.6%—— 粮食的 "粮食",如何减"肥"增效,2025年,https://www.news.cn/politics/20250223/267328ec81c2439b8a41eb9f3076bd5b/c.html
- **51** 农业农村部, 化肥减量增效助力农业绿色发展, 我国农用化肥用量 43 年首次实现负增长, 2017 年, https://www.moa.gov.cn/xw/zwdt/201712/t20171227_6131397.htm
- **52** 农业农村部,三大粮食作物化肥利用率稳步提升,2025年,https://www.moa.gov.cn/xw/zwdt/202501/t20250114 6469150.htm
- 53 生态环境部,国家统计局,农业农村部,第二次全国污染源普查公报,2020年,https://www.mee.gov.cn/xxgk2018/xxgk/1/202006/t20200610_783547.html
- **54** 刘晓倩, 李玲, 孙小龙. 化肥面源污染排放的时空演进及驱动因素研究——基于中国 13 个粮食主产省 $2000 \sim 2020$ 年数据 [J]. 干旱区资源与环境, 2024, 38 (05): 49-59. DOI:10.13448/j.cnki.jalre.2024.097.
- 55 农村工作通讯,发展绿色种养循环 推动农业高质量发展,2024 年,http://journal.crnews.net/ncgztxcs/2024/dssq/lszyxh/964664_20240712090103.html
- 56 崔学军,陈宏坤,化肥供给侧结构性改革调研报告,化学工业出版社,2017年
- **57** 中国化工报,最新氮肥企业利润、合成氨产量、尿素产量 20 强公布! 氮肥甲醇行业发展严重分化,2023 年, https://finance.sina.com.cn/jjxw/2023-06-15/doc-imyxkhsh5959744.shtml
- 59 李抒苡,薛雨军,王珮珊,碳中和目标下的中国化工零碳之路,落基山研究所,2022年,https://rmi.org.cn/insights/chinas-chemical-industrys-zero-carbon-path-under-the-goal-of-carbon-neutrality/
- 60 中国经济网,有机肥产业规模持续扩大,2025年,http://www.ce.cn/xwzx/gnsz/gdxw/202507/t20250728_2421564.shtml
- **61** 中国农资传媒,深度 | 中国缓控释肥产业变迁:从技术追赶迈入创新领航时代,2025 年, https://www.toutiao.com/article/7477484709363909172/
- **62** 中华合作时报,按下"高质量"键向化肥强国迈进,2020年,https://www.chinacoop.gov.cn/news.html?aid=1697983
- **63** 先正达集团中国, MAP 绿色高质量发展报告 2023, 2024 年, https://syngentagroup.cn/sustainability-governance/sustainability/China/

落基山研究所,中国化肥减量增效十年之路,2025,https://rmi.org.cn/insights/fertilizer-reduction-report/

RMI重视合作,旨在通过分享知识和见解来加速能源转型。因此,我们允许感兴趣的各方通过知识共享 CC BY-SA 4.0 许可参考、分享和引用我们的工作。 https://creativecommons.org/licenses/by-sa/4.0/

除特别注明,本报告中所有图片均来自iStock。

RMI Innovation Center 22830 Two Rivers Road Basalt, CO 81621

www.rmi.org

© 2025年11月,落基山研究所版权所有。 Rocky Mountain Institute和RMI是落基山研究所的 注册商标。